
Electronic Preprint for Journal of Information Processing Vol.20 No.1

Regular Paper

Half-process: A Process Partially Sharing
Its Address Space with Other Processes

Kentaro Hara1,a) Kenjiro Taura1

Received: March 31, 2011, Accepted: September 12, 2011

Abstract: Threads share a single address space with each other. On the other hand, a process has its own address
space. Since whether to share or not to share the address space depends on each data structure in the whole program,
the choice of “a thread or a process” for the whole program is too much “all-or-nothing.” With this motivation, this
paper proposes a half-process, a process partially sharing its address space with other processes. This paper describes
the design and the kernel-level implementation of the half-process and discusses the potential applicability of the
half-process for multi-thread programming with thread-unsafe libraries, intra-node communications in parallel pro-
gramming frameworks and transparent kernel-level thread migration. In particular, the thread migration based on the
half-process is the first work that achieves transparent kernel-level thread migration by solving the problem of sharing
global variables between threads.

Keywords: partitioned global address space, Linux kernel, thread migration, finite element method, reconfiguration,
productivity

1. Introduction

Threads share a single address space with each other.
When one thread issues memory operations such as
mmap()/munmap()/mprotect(), all threads can see the ef-
fects immediately. When one thread updates a memory address,
all threads can see the update immediately. In addition, all
threads can access the same data with the same address. With
these convenient semantics, a programmer can easily describe
data sharing between the threads. However, in exchange for
this convenience, sharing the single address space between
the threads often makes it difficult to describe correct parallel
programs. The programmer has to take great care of complicated
race conditions and non-deterministic behaviors [6]. Needless
to say, the programmer cannot use thread-unsafe libraries in his
program. To avoid these difficulties, the programmer can instead
use not a thread but a process, which has its own address space,
but in this case the programmer cannot enjoy the convenient
semantics of data sharing based on the single address space.
Obviously, whether to share or not to share the address space
depends on each data structure in the whole program. Therefore,
the choice of “a thread or a process” for the whole program is
too much “all-or-nothing.” It is preferable that the programmer
can flexibly choose whether (not all but) each data structure
should be shared or not individually. In this way, the total goal
of our work is to develop a mechanism that provides processes
with a shared address space semantically equivalent to the
single address space between threads. By this mechanism, the

1 School of Information Science and Technology, The University of
Tokyo, Bunkyo, Tokyo 113–8656, Japan

a) haraken@logos.ic.i.u-tokyo.ac.jp

Fig. 1 The design of a half-process.

programmer can enjoy both advantages of process and thread,
depending on how the programmer wishes to share each data
structure.

With this motivation, this paper proposes a half-process, a pro-
cess partially sharing its address space with other processes. As
shown in Fig. 1, each half-process consists of a non-shared ad-

dress space and a shared address space. The shared address
space is totally shared with other half-processes, semantically

equivalent to the single address space between threads. While
all global variables and the memory allocated by normal mmap()
are allocated on the non-shared address space, the programmer
can allocate memory on the shared address space just by using
mmap() with a special option. Although this kind of shared ad-
dress space can be implemented using mmap() at the user level,
the half-process implements the shared address space at the ker-
nel level, which provides programmers with easier way for inter-
process communication on the shared address space. In addition,
the half-process provides the method for direct memory access
between non-shared address spaces for performance and conve-
nience.

The rest of this paper is organized as follows. In Section 2 we
discuss the essential difference between the shared address space
of the half-process and inter-process shared memory. In Section 3
we describe the potential applicability of the half-process. In Sec-
tion 4 we describe the design and kernel-level implementation of

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

the half-process. In Section 5 we apply the half-process to trans-
parent kernel-level thread migration and evaluate the performance
of the half-process using real-world parallel applications such as
PageRank calculation and an finite element method.

2. Related Work

The total goal of our work is to achieve a shared address
space semantically equivalent to the single address space between
threads, so that a programmer can enjoy both advantages of pro-
cess and thread. As we mentioned in Section 1, the two primary
techniques of the half-process are the shared address space be-
tween half-processes and the direct memory access between ad-
dress spaces.

2.1 A Shared Address Space between Processes
Although there are several possible semantics for designing the

shared address space, we consider that the shared address space is
desirable to be semantically equivalent to the single address space
between threads. This is because (1) in the beginning the shared
address space is intended to be a space for easy data sharing, (2)
one of the easy ways for data sharing is the single address space
between threads as we indicated at the head of Section 1, and (3)
a lot of programmers have been familiar with the semantics of the
single address space between threads.

Here we discuss the essential difference between the shared ad-
dress space of the half-process and inter-process shared memory.
For detailed discussion, let us first clarify the technical seman-
tics of the shared address space between half-processes, which
is semantically equivalent to the single address space between
threads. The semantics I is that all meta-operations such as

mmap()/munmap()/mprotect() issued by any half-process must be

immediately reflected in all half-processes. The semantics II is
that all the half-processes must be able to access the same data

with the same address. In other words, the semantics I means that
when one half-process issues a meta-operation, the result of the
meta-operation must be visible to all the half-processes immedi-
ately after the meta-operation returns, and the semantics II means
that if one half-process can access data x with an address a then
all the half-processes must be able to access the data x also with
the address a.

In POSIX inter-process shared memory *1, the programmer
creates the inter-process shared memory with shm open() and
sets the size of the inter-process shared memory with ftrun-
cate(). Then by letting multiple processes map the inter-process
shared memory into their address spaces with mmap() with
MAP SHARED option, the programmer can use the inter-process
shared memory between the processes. The key observation here
is that a process p cannot use the inter-process shared memory
unless the process p issues mmap() by itself. In other words,
if the programmer wishes to make the process p allocate shared
data between the multiple processes, the programmer has to make
not only the process p but also all the processes issue mmap()
somehow. This programming interface is inconvenient. Thus,
the inter-process shared memory does not meet the semantics

*1 The similar discussion holds for System V inter-process shared memory.

I in that meta-operations issued by any process are not auto-
matically reflected in other processes. Furthermore, there is no
guarantee that the programmer can map the inter-process shared
memory to the same addresses between all the processes (without
any special trick such as negotiating with other processes about
which addresses are available on each process). If the mapped
addresses are different between the processes, the programmer
must manage pointers to the inter-process shared memory by not
the mapped address but the offset from the start address of the
map. This programming interface dramatically degrades the pro-
grammability for complicated data structures such as a graph.
Thus, the inter-process shared memory does not meet the seman-
tics II.

One easy way to meet the semantics II using the inter-process
shared memory is that the programmer initially maps a suffi-
cient size of the inter-process shared memory with mmap() with
MAP SHARED option and then spawns child processes with
fork() [21]. Since the spawned child processes inherit the map
of the parent process, all the spawned child processes are guar-
anteed to map the inter-process shared memory into the same ad-
dresses. The semantics I, however, does not still hold. Thus the
spawned child processes cannot easily issue mmap() and mun-
map() after once they are spawned, which means that the once
physically-allocated inter-process shared memory must continue
to exist until the end of a program, lacking flexibility. For exam-
ple, assume that the parent process allocates a large size of inter-
process shared memory with mmap() with MAP SHARED op-
tion and then spawns child processes. At this point, this mmap()
does not consume physical memory. Then, assume that one of
the child processes allocates 32 GB of memory (with malloc() or
something) from the inter-process shared memory. At this point,
32 GB of physical memory is consumed. Next, assume that the
child process is going to deallocate the 32 GB of memory (with
free() or something). Here, note that the child process cannot
internally issue munmap() to the inter-process shared memory,
since there is no easy way to reflect munmap() to other processes
(because of the lack of the semantics I). In this way, the child
process can just mark that the 32 GB of memory is available so
that the memory can be reused in the future, but the child process
can never internally deallocate the physical memory. This means
that we cannot avoid that the 32 GB of physical memory is con-
tinued to be alive, even if the program does not need the 32 GB of
memory any more. Incidentally, the system call madvise() with
MADV DONTNEED option enables such physical memory to
be released from the process’s address space. The system call de-
clares that the process no longer needs specified memory pages.
However, this system call is effective only in the process that is-
sues it. In other words, if other processes also have accessed the
same shared memory, the physical memory allocated to them is
not released. Consequently, even madvise() is not satisfactory. In
essence, physically-allocated inter-process shared memory must
continue to exist until the end of the program.

In summary, it is difficult to allocate/deallocate and ex-
pand/shrink the inter-process shared memory dynamically. In
addition, with respect to the semantics I, there is no easy way
to reflect the memory protection change by mprotect() to other

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

processes. Thus, the semantics of the inter-process shared mem-
ory is much less convenient than that of the shared address space
between half-processes, which is equivalent to that of the single
address space between threads.

2.2 Direct Memory Access between Address Spaces
There has been much work for the direct memory access be-

tween address spaces primarily in the context of improving the
intra-node communication performance of MPI, such as Neme-
sis [7], [9], Limic2 [26] and other works [15], [28]. The most pop-
ular approach is to create the system call that copies data between
address spaces [15], [26], [28]. Specifically, (1) a kernel pins the
target address range of a source address space to physical mem-
ory, (2) the kernel maps the range to a kernel address space and
(3) the kernel copies data from the kernel address space to the
target address range of a destination address space. Actually, as
discussed in Section 4.3.5, our approach is the same as this ap-
proach (and thus has no novelty with respect to the direct memory
access). More optimizations are possible by overlapping the pin-
ning and copying [15] or by offloading CPUs using I/OAT DMA
engine [7], [15], [28]. SMARTMAP [5], [6] enables the fast di-
rect memory access at the user level by allowing a programmer
to address another process’s virtual addresses with a simple offset
calculation, but it depends on the special lightweight kernel that
uses the linear mapping from virtual addresses to physical pages
without demand-paging and maps the same executable image to
the identical virtual addresses across all processes.

3. Potential Applicability

Before introducing the detailed design and implementation of
a half-process, we discuss the potential applicability of the half-
process.

The first applicability is multi-thread programming with
thread-unsafe or thread-inefficient libraries. Some libraries are
thread-unsafe. Even if they are thread-safe, they sometimes per-
form poorly when used by multiple threads because of too coarse-
grained locks or false sharing of data. For example, assume that a
programmer is going to describe parallel graph algorithm, which
requires complicated handling of pointers, with the support of the
thread-unsafe or thread-inefficient libraries. In this case, by using
the half-process, the programmer can not only allocate the graph
structures on the shared address space and enjoy the convenient
semantics of data sharing for his graph algorithm but also use
the thread-unsafe or thread-inefficient libraries on the non-shared
address space.

The second applicability is flexible hybrid program-
ming [32]. In existing hybrid programming frameworks
based on MPI+OpenMP or MPI+pthread, instances *2 inside
one MPI process are implemented as threads because currently
the thread is the only way to realize the shared address space.
However, since the threads share the shared address space
completely, the programmer cannot use the thread-unsafe or
thread-inefficient libraries any longer. Note that in the first place,
practical hybrid programming itself does not require that all

*2 In this paper we refer to a process or a thread or a half-process as an
instance.

data is shared between the instances inside one MPI process
but just require that only necessary data is shared between the
instances. At this point, the half-process can be useful to build
a more flexible hybrid programming framework that enables
the programmer to choose what data to be shared between the
instances.

The third applicability is reducing the burden on the framework
programmers *3 of parallel programming frameworks. Ignoring
hybrid programming for the moment, each instance of MPI is
usually implemented as a process partly because an address space
must be independent between the instances in order to give the
application programmer a consistent view of global variables. In
other words, if each instance is implemented as a thread, whether
or not the global variables are shared between the threads depends
on whether or not the threads exist on the same process, which
cannot be naturally distinguished by the application programmer
view. Therefore, each instance of MPI is usually implemented
as a process and thus the framework programmers of MPI have
challenged how they can improve the performance of intra-node
communications between the MPI processes using inter-process
shared memory and the direct memory access across the MPI pro-
cesses [5], [6], [7], [9], [15], [26], [28]. As discussed in Section 2,
however, it is difficult to dynamically allocate/deallocate or ex-
pand/shrink the inter-process shared memory. Thus, the follow-
ing way has been used for intra-node communication methods in
most existing frameworks [10], [28]:
(1) Initially, a framework allocates the fixed and relatively small

size of inter-process shared memory for each pair of MPI
processes. Namely, nC2 inter-process shared memories are
allocated in total, where n is the number of the MPI pro-
cesses. Here we denote the inter-process shared memory for
process i and process j by mi, j.

(2) When the size of the message that the process i sends to the
process j is small enough, mi, j is used for this communi-
cation. Specifically, the process i copies the message from
the process i’s address space to mi, j, and then the process j

copies the message from mi, j to the process j’s address space.
(3) When the size of the message that the process i sends to

the process j is large, several ways are possible. The first
way is that the process i divides the whole message into the
small chunks each size of which fits in mi, j and then copies
those chunks to the process j’s address space using mi, j in a
pipelined manner. The second way is that the process i (or
the process j) copies the message directly from the process
i’s address space to the process j’s address space by using
the direct memory access between processes. The third way
is that (1) the process i allocates a new inter-process shared
memory m′ of the message size, (2) the process i copies the
message from the process i’s address space to m′, (3) the
control data that tells the head address of m′ is sent to the
process j through mi, j, and (4) the process j copies the mes-
sage from m′ to the process j’s address space.

*3 In this paper we refer to the programmer who develops applications by
using some kind of programming frameworks like MPI or DMI as an
application programmer, and refer to the programmer who develops the
framework itself as a framework programmer.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

Thus, if a framework uses the inter-process shared memory, ex-
tra memory copy is required or the framework programmer of
the framework has to describe complicated data sharing. In addi-
tion, efficient implementation of collective communications will
require more complicated data sharing between processes. In
contrast, if a shared address space between the processes is pro-
vided by the half-process, the framework programmer can imple-
ment those intra-node communications more simply thanks to the
convenient semantics of the shared address space. In essence, by
using the half-process, the framework programmer can easily de-
scribe efficient intra-node communications based on the shared
address space, as well as the application programmer can still de-
scribe his program based on the non-shared address space.

The fourth applicability is transparent kernel-level thread mi-
gration. We discuss this in detail in Section 5.

4. Half-process: A Process Partially Sharing
Its Address Space with Other Processes

4.1 Design
Figure 1 shows the design of a half-process. The whole ad-

dress space of each half-process consists of a non-shared address

space, the private address space to the half-process, and a shared

address space, the address space shared with all half-processes.
This shared address space is semantically equivalent to the sin-
gle address space between threads and meets the semantics I and
II. In other words, if a half-process p allocates a memory on
the shared address space, then the half-process p can pass the
address of the memory to another half-process q (through some
memory on the shared address space), and then the half-process
q can access the memory using that address, equivalent to the
way that a programmer normally does in multi-threaded program-
ming. Here we refer to the set of half-processes that share their
shared address spaces with each other as a half-process set. In
particular, if a half-process set includes only one half-process, the
half-process is just a normal process. By default, the half-process
behaves as a normal process using only the non-shared address
space, namely, all global variables and the memory allocated by
mmap() are allocated on the non-shared address space. In or-
der to allocate data on the shared address space, the programmer
can use mmap() with MAP HALFPROC option. In addition, the
programmer can copy data directly between non-shared address
spaces of two half-processes in the same half-process set. Specif-
ically, dmread(pid t pid, void *ptr, size t size, void *buf)
copies data directly from the range [ptr, ptr+size) of the half-
process with process id pid to the range [buf, buf+size) of the
half-process that issued this dmread(). Similarly, dmwrite(pid t
pid, void *ptr, size t size, void *buf) copies data directly from
the range [buf, buf+size) of the half-process that issued this
dmwrite() to the range [ptr, ptr+size) of the half-process with
process id pid. These dmread() and dmwrite() are possible only
between two processes inside the same half-process set.

In summary, by using half-processes, the programmer can de-
scribe intra-node communications easily using the shared address
space or directly copying data between the non-shared address
space.

The half-process set is defined by the option of clone(). In

Fig. 2 Examples of half-process sets.

Linux, if the programmer issues clone() with CLONE VM op-
tion, then the spawned child process shares the address space of
the parent process and thus the programmer can create a thread,
and if the programmer issues clone() without CLONE VM op-
tion, then the spawned child process uses a new address space and
thus the programmer can create a process. Similarly, if the pro-
grammer issues clone() with CLONE HALFPROC option, the
programmer can create a half-process. More precisely, the half-
process spawned by clone() with CLONE VM option belongs to
the half-process set that includes only the half-process (and thus
this half-process becomes just a normal process), and the half-
process spawned by clone() with CLONE HALFPROC option
belongs to the same half-process set of the parent half-process.
Figure 2 shows examples of the relationships of half-process sets.

With respect to security issues, note that the shared address
space can be constructed only among half-processes inside the
same half-process set and that dmread()/dmwrite() can be also
used only among half-processes inside the same half-process set.
Furthermore, each half-process p in a half-process set s can be
added to the half-process set s only by forking the half-process
p with CLONE HALFPROC option from any half-process in the
half-process set s. This means that the shared address space and
dmread()/dmwrite() are allowed only among the half-processes
that are explicitly allowed to use the shared address space and dm-
read()/dmwrite() with each other. In other words, it is impossible
for a stranger process to violate the protection of half-processes
by abusing the shared address space or dmread()/dmwrite().

4.2 Motivation for Kernel-level Implementation
Here we explain the reason why we implement a half-process

not in the user level but in the kernel level. First, dmread() and
dmwrite() require the kernel-level implementation because the
default Linux kernel does not allow a user-level direct memory
access over different address spaces. Second, with respect to the
shared address space between half-processes, the user-level im-
plementation based on inter-process shared memory is possible
in the following way: (1) we can allocate a sufficient size of
the inter-process shared memory with shm open(), (2) we can
meet the semantics I by hooking all meta-operations such as
mmap()/munmap()/mprotect() for the shared address space and
then somehow let all the half-processes issue the meta-operation
synchronously, and (3) we can meet the semantics II by care-
fully coordinating the address mapped by mmap() so that all the
half-processes can map memory into the same address. This user-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

Fig. 3 The address range partitioning for a shared address space and a non-
shared address space.

level implementation, however, causes overhead proportional to
the number of half-processes for every meta-operation, because
all the half-processes need to issue the meta-operation based on
synchronizations and negotiations between all the half-processes.
We consider that this overhead is critical, especially in case of
a large number of half-processes, because these meta-operations
are very primitive and used regularly by many applications. Thus
we adopt the kernel-level implementation explained below.

4.3 Linux Kernel Modifications
We describe the kernel-level implementation of the half-

process based on the Linux 2.6 kernel and the x86 64 architec-
ture.
4.3.1 The Basic Idea

First, we statically fix the address ranges of a non-shared ad-
dress space and a shared address space. Specifically, since in
the X86 64 architecture we can use the range [0, 247) as a user
address space range, we use the range [245, 246) as a shared ad-
dress space range and the remaining range [0, 245) and [246, 247)
as a non-shared address space range *4 (Fig. 3). Second, we let
each half-process use the address space of the half-process for the
non-shared address space range, and let each half-process use the
parent half-process’ address space for the shared address space
range. Here the parent half-process of a half-process p is defined
as the half-process that is the first member of the half-process
set to which the half-process p belongs. In other words, there
is exactly one parent half-process for each half-process set and
the parent half-process is the half-process that firstly spawned an-
other half-process in the half-process set (See Fig. 2). As a result,
the shared address space range of the non-parent half-processes
is not used at all.

Obviously, the key implementation issue here is how to “redi-
rect” the memory operations (i.e., meta-operations and normal
read/write accesses) for the shared address space of each half-
process into the memory operations for the shared address space
of the parent half-process. To address this issue, we propose the
novel implementation techniques, address space switching for
redirecting meta-operations and page table redirection for redi-
recting normal read/write accesses. By these two redirections,
we can meet the semantics I and II, respectively. Note that since
the target of these redirections is only the memory operations for
the shared address space range, this kernel modification does not
affect the behaviors of the normal applications that do not use
any functions of the half-process, except that an available address
range is limited to [0, 245) and [246, 247).

*4 The reason for this “enclave” address partitioning is that since the first
range [0, ...) and the last range [..., 247) are implicitly used for non-
shared special data such as a code segment and a machine stack, we have
to handle these address ranges as a non-shared address space range.

Fig. 4 The relationships between task struct and mm struct for (A) a
process, (B) a thread and (C) a half-process.

4.3.2 Address Space Switching
Address space switching is a technique for redirecting meta-

operations for the shared address space into the desired address
space.

In the default Linux kernel, a process/thread is represented as a
task struct structure, and an address space is represented as an
mm struct structure. Each task struct has an mm member, the
pointer to the mm struct that represents the address space of the
process/thread represented by the task struct (Fig. 4 (A)(B)).
This mm struct manages meta-operations for its address space,
for example which addresses are currently mapped and which
kind of memory protection is applied to each address range. Since
a half-process originally has to behave as a normal process, each
half-process is also represented by a task struct structure with
its own mm struct.

The purpose here is to switch the mm struct of the half-
process to the mm struct of the parent half-process for all the
meta-operations targeted for the shared address space range.
The key observation is that the address space to which the
meta-operation is applied is determined by the mm member
of the task struct issuing the meta-operation at the time,
hence by switching the mm member of the task struct to an-
other mm struct at the head of the meta-operation, we can
switch the address space to which the meta-operation is ap-
plied. To do this, first, we add two members, my mm and
parent mm, to the task struct of the half-process (Fig. 4 (C)).
The my mm member points to the mm struct of the half-process,
the parent mm member points to the mm struct of the parent
half-process, and the mm member points to the target mm struct
of the meta-operation running at the time. If the half-process is
spawned by clone() without CLONE HALFPROC option, both
the my mm member and the parent mm member are initialized to
the mm struct of the half-process. If the half-process is spawned
by clone() with CLONE HALFPROC option, the my mm mem-
ber is initialized to the mm struct of the half-process and the
parent mm member is initialized to the parent mm member of
the parent half-process *5 of the clone(). Thus we can express the
half-process relationships shown in Fig. 2. Second, we modify
the kernel code for meta-operations (mmap(), munmap(), mpro-

*5 Here “the parent half-process” means not the parent half-process of a
half-process set but the parent half-process of the clone().

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

tect(), msync(), mbind(), page fault handling and so on) as shown
in Fig. 5. At the head of the meta-operation targeted for the shared
address space, we switch the mmmember to the parent mmmem-
ber, flush TLBs and load the page table of the parent half-process.
At the end of the meta-operation we switch the mm member back
to the my mm member, flush the TLBs and load the page table
of this half-process. No modification to the kernel code for the
meta-operation itself is required. By this simple switching, the
kernel executes the meta-operation as if the address space of the
half-process temporarily becomes the address space of the parent
half-process.
4.3.3 Page Table Redirection

Page table redirection is a technique for redirecting normal
read/write accesses for the shared address space into the desired
address space by redirecting page table entries.

The x86 64 architecture realizes a 48 bit address space with 4
level page tables. Each level table has 512 entries. In particu-
lar, each 4th level (top level) entry manages 248/512 = 239 ad-
dresses. In the default Linux kernel, each mm struct has the pgd
member that points to the head address of the 4th level table. At
every context switch from task struct t to task struct t′, if
t→mm�t′→mm, a CPU flushes TLBs and loads the page table of t′

by loading the t′→mm→pgd into %cr3 register of the CPU.
The purpose here is to redirect the page table entries of the

shared address space range [245, 246) of the half-process into the
corresponding page table entries of the parent half-process as
shown in Fig. 6. In this way all accesses to the shared address
space range by any half-process are automatically redirected to

some meta operation(uint64 t addr, ...) {
struct task struct *current = the task struct running now

if addr is in the shared address space then

current→mm = current→parent mm

flush TLBs

load the page table of current→mm to the CPU

endif

... /* the unmodified kernel code of this meta operation */

if addr is in the shared address space then

current→mm = current→my mm

flush TLBs

load the page table of current→mm to the CPU

endif

}

Fig. 5 An algorithm for address space switching.

Fig. 6 A mechanism of page table redirection.

the parent half-process by the CPU. However, constructing the
structure of this page table redirection is not trivial in Linux
because the page table is constructed dynamically on demand
in response to a page fault. Here assume that a half-process
causes a page fault at the shared address the 4th, 3rd, 2nd and
1st level page table entry, i4, i3, i2 and i1, respectively. We denote
by t the task struct of the half-process and denote by t′ the
task struct of the parent half-process. First, we check whether
the 4th level page table exists or not by checking t→mm→pgd,
and if not, we allocate the 4th level page table as t→mm→pgd.
Second, we check whether the 3rd level page table exists or not
by checking t→mm→pgd[i4], and if not, we allocate the 3rd level
page table as t′→mm→pgd[i4] and update t→mm→pgd[i4] with
t′→mm→pgd[i4]. As a result, t→mm→pgd[i4]==t′→mm→pgd[i4]
holds. Third, we check whether the 2nd level page table ex-
ists or not by checking t′→mm→pgd[i4][i3], and if not, we al-
locate the 2nd level page table as t′→mm→pgd[i4][i3]. Fourth,
we check whether the 1st level page table exists or not by check-
ing t′→mm→pgd[i4][i3][i2], and if not, we allocate the 1st level
page table as t′→mm→pgd[i4][i3][i2]. Thus, we have to modify
two page tables at the page fault but no TLB flushing is necessary
during and after this page table modification because the page re-
lated to the modified page table entries has not existed before this
modification.
4.3.4 Improvement of Copy-on-write

No data is allocated on the shared address space range of a non-
parent half-process. Thus, when clone() is issued, we do not have
to trap copy-on-write in the shared address space range and thus
can reduce the overhead of clone().
4.3.5 A Direct Memory Access Over Address Spaces

dmread(pid t pid, void *ptr, size t size, void *buf) is imple-
mented as follows (dmwrite() is similar) [15], [26], [28]. First, we
pin the range [ptr, ptr+size) of the half-process with process
id pid. Second, we map the pinned range into a kernel address
space by kmap. Third, we copy data directly from the mapped
kernel address space to the range [buf, buf+size) of the current
half-process.

4.4 Performance Evaluations
4.4.1 Experimental Settings

We used the machine that has two Intel Xeon E5530 (2.4 GHz,
4 physical cores but 8 logical cores with hyper-threading,
4 × 256 KB of L2 cache and 8 MB of L3 cache) CPUs, 24 GB

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

of memory, running the Linux OS with the modified 2.6.26-2-
amd64 kernel.
4.4.2 Inter-process Data Copy

We evaluate the performance of several strategies [8] for copy-
ing data between two half-processes located on the same CPU
(Fig. 7) or the different CPU (Fig. 8). Specifically, (1) one half-
process p writes data d to some memory location l, (2) we start
a timer, (3) the other half-process p′ reads the data d and calcu-
lates the check sum of the data d and (4) we stop the timer. In
Fig. 7 and Fig. 8, “socket” means that l is the non-shared address
space of p and p sends d via a loopback socket to p′. “pipe”
means that l is the non-shared address space of p and p sends
d via an anonymous pipe to p′. “half-process” means that l is
the shared address space between p and p′ and p′ just reads d

from the shared address space. “inter-process” means that l is the
POSIX inter-process shared memory between p and p′ and p′ just
reads d from the inter-process shared memory. “dmread” means
that l is the non-shared address space of p and p′ reads d using
dmread(). “doublecopy” means that l is the non-shared address
space of p and firstly p writes d to inter-process shared mem-
ory and secondly p′ reads d from the inter-process shared mem-
ory, similar to the intra-node communications in MVAPICH2 and
OpenMPI [7], [15].

We can observe that, first, “socket” and “pipe” are much slower
than “half-process” for the small size of data and 1.17∼1.96 times
slower for 228 bytes of data. Second, “half-process” and “inter-
process” perform equally well since they both use shared mem-

Fig. 7 The performance comparison of several strategies for copying data
between half-processes on the same CPU.

Fig. 8 The performance comparison of several strategies for copying data
between half-processes on different CPUs.

ory. Third, for 228 bytes of data, “dmread” performs 1.22 times
better than “doublecopy” in Fig. 7 and 1.26 times better than
“doublecopy” in Fig. 8. Fourth, “dmread” is slower than “double-
copy” in Fig. 7 for less than 216 of data, despite the fact that “dm-
read” requires only one memory copy but “doublecopy” requires
two memory copies. This is considered to be because “dmread”
requires kernel context switching but “doublecopy” does not re-
quire it. Fifth, the reason why in Fig. 8 “dmread,” which requires
kernel-level data copy before p′ reads and calculates the check
sum, performs almost equal to “half-process,” which just reads
and calculates the check sum, is that both performances are dom-
inated not by the overhead of kernel operations but by the cost of
inter-CPU memory accesses.
4.4.3 The Overhead of Address Space Switching and Page

Table Redirection
Next, we evaluate the overhead of address space switching and

page table redirection. 10,000,000 mmap()s for the non-shared
address space, which requires no address space switching, took
2.531 seconds and 10,000,000 mmap()s for the shared address
space took 2.654 seconds. 1,000,000 page faults for the non-
shared address space, which requires no page table redirection,
took 1.316 seconds and 1,000,000 page faults for the shared ad-
dress space took 1.327 seconds. Thus, the overhead is pretty
small (while frequent TLB flushing may degrade the total per-
formance of realistic applications).

5. Application to Transparent Kernel-level
Thread Migration

5.1 Motivation
Thread migration [3], [4], [11], [13], [19], [20], [22], [23], [24],

[25], [27], [30] is a significant elemental technique for dynamic
load balancing, computational migration for improving data lo-
cality and parallel computational reconfiguration. Here, assume
the framework whose process structure of each node is shown
in Fig. 9. There is a receiver thread, which receives messages
from another node, there is a controller thread, which schedules
thread migration, and there are multiple computational threads,
which execute the computation described by the application pro-
grammer and are the targets of the thread migration. Although
many frameworks have investigated the thread migration in C,
the thread migration causes two critical problems.

The first problem is that of address collision because of thread
migration. A thread’s memory (i.e., stack and heap) can include
pointers to the thread’s memory itself. Thus in order to con-
tinue the thread execution correctly over the thread migration, the
thread’s memory has to be allocated on the exactly identical ad-
dresses between a source node and a destination node. However,
without any preparation in advance, there is no guarantee that the
addresses used by the thread’s memory on the source node are

Fig. 9 A model of thread migration frameworks.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

available at the destination node. One way to solve this address
collision is iso-address [3], [4], [30], which divides the whole ad-
dress space into many small address spaces and assigns a different
small address space to each thread in advance. This guarantees
that the addresses used by all threads never overlap and thus the
address collision problem never happens at the thread migration.
However, this iso-address limits computation scale depending on
the whole address space size. In the iso-address ns = w must
hold, where n is the number of threads, s is the address space
size available for each thread and w is the whole address space
size. Thus, even in today’s x86 64 architecture where w is 247,
if n is 16384 then s is just 32 GB, and if s is 512 GB then n is
just 1,024, which can be practical numbers in the foreseeable fu-
ture. Another way to solve the address collision problem is to
allow the thread’s memory to be allocated on different addresses
between the source node and the destination node by translating
all pointers in the thread’s memory correctly at the thread migra-
tion [11], [22], [23], [24], [25]. However, complete translation is
impossible without restricting the syntax of C because C is not a
type-safe language.

The second problem is address space dependence between
threads, which is a potential problem of the thread migration.
Threads inside one process share a single address space, es-
pecially global variables. Thus when one of the threads in
the process migrates, it inevitably results in inconsistency about
the global variables whether the global variables of the process
are migrated with the thread or not. Furthermore, an applica-
tion programmer cannot use the global varibles as he expects,
namely as “global variables per thread,” because the global vari-
ables are actually shared with other threads in the same process.
Note that the application programmer cannot even know which
threads are in the same process because the framework should
migrate the threads transparently. With these backgrounds, most
existing frameworks such as Adaptive MPI [19], [20], MigTh-
read [23], [24], [25], PM2 [3], [4] and Arachne [13] simply pro-
hibit the use of the global variables in the first place, which im-
plies that the application programmer cannot even use safely any
libc functions that may use the global variables such as printf(),
malloc() and many other basic functions. Tern [27] allows the
use of the global variables by converting the global variables into
TLSes (thread local storages) at the pre-processing phase, but it
cannot support the global variables used in already compiled li-
braries. Thus, no other thread migration framework can solve the
problem of sharing global variables.

Considering these facts, in order to achieve transparent (i.e.,
without any inconvenient restriction on the syntax of C and with-
out any annotations by the application programmer) kernel-level
thread migration *6, the address space of each thread must not be
shared. In other words, each instance in Fig. 9 must be imple-
mented not a thread but a process. However, replacing the thread
in Fig. 9 with a process can be harder work for the framework pro-
grammer, as the framework internally requires tighter intra-node
communications between the threads. For example, the receiver
thread has to transmit received data to a destination thread and

*6 Here we consider only the migration of the thread’s memory. The mi-
gration of file descriptors and sockets is out of the scope of this paper.

Fig. 10 The system structure of DMI.

the controller thread has to coordinate all computational threads.
Furthermore, in case that this framework provides a PGAS (Parti-
tioned Global Address Space) model for the application program-
mer and manages shared data cache between the threads (i.e., the
remote data once accessed by any thread is cached into the pro-
cess and subsequent accesses to the data by another thread in the
process can use the cached data), more complicated data shar-
ing is required between the threads. If each instance is a thread,
the framework programmer can easily program this complicated
data sharing by malloc()/free()/read/write with appropriate syn-
chronizations thanks to the convenient semantics of a single ad-
dress space. On the other hand, if each instance is a process, it
is much more difficult for the framework programmer to program
the complicated data sharing using inter-process shared memory
as discussed in Section 2.

In summary, in the thread migration framework the application
programmer requires a non-shared address space but the frame-
work programmer requires a shared address space between in-
stances. This is exactly the case where a half-process finds its
value.

5.2 Parallel Computational Reconfiguration
We apply a half-process to DMI (Distributed Memory Inter-

face) [17], [18], which is originally a parallel computational re-
configuration framework based on a multi-threaded PGAS model.
In DMI, an application programmer only has to create a suffi-
cient number of threads and describe a parallel computation eas-
ily on the basis of a global-view-based PGAS model, similar to
multi-thread programming on a physically shared memory envi-
ronment. Then DMI automatically reconfigures (i.e., scales up
or down) the computation in response to the dynamic joining or
leaving of nodes by transparently migrating the threads on avail-
able nodes at the time. The reason why we originally imple-
mented each instance of DMI as a thread is that we needed the
convenient semantics of a single address space for implement-
ing sophisticated functions (overviewed below) with complicated
data sharing between instances. Thus, previously in DMI the ap-
plication programmer cannot use global variables and thus cannot
use any libraries that may use the global variables for safe thread
migration. In this paper we eliminate this inconvenient limitation
and realize transparent kernel-level thread migration by replacing
a thread with a half-process.
5.2.1 Framework Overview

To begin with, we overview the original multi-threaded DMI
(Fig. 10). See more details in our publications [17], [18]. First,

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

void DMI_main(int argc, char **argv) {

...;

for(i = 0; i < thread_num; i++) /* create threads */

DMI_create(&handle[i], arg_addr + i * sizeof(arg_t));

...;

for(i = 0; i < thread_num; i++) { /* retrieve the threads */

DMI_join(handle[i]);

...;

}

uint64_t DMI_thread(uint64_t arg_addr) { /* each thread */

...;

for(iter = 0; /* until convergence */; iter++) {

DMI_yield();

...;

}

}

Fig. 11 Programming interface of DMI.

DMI provides a global address space with cache coherence. Each
process provides DMI with some amount of memory called a
memory pool, and then DMI constructs the global address space
over these distributed memory pools by implementing memory
management mechanisms such as page tables at the user level.
Each thread can access all memory pools transparently through
reading/writing from/to the global address space. If the accessed
region of the global address space does not exist on the memory
pool of the process on which the thread runs, a page fault occurs
and the page is transferred from the process that owns the page
at the time. At this point, since DMI maintains the cache coher-
ence of the global address space, the process can cache the trans-
ferred page in its memory pool if necessary. Specifically, the ap-
plication programmer can explicitly specify the cache coherence
granularity and how the transferred page should be cached (no-
cache or invalidate-cache or update-cache) at every read/write,
and thus optimize the performance of accessing the global ad-
dress space explicitly and powerfully. Second, since the mem-
ory pool is shared with multiple threads on the same process, the
data sharing between the threads on the same process is accom-
plished efficiently through physical shared memory. In this way
the application programmer can enjoy hybrid programming trans-
parently without considering the distinction between inter-node
parallelism and intra-node parallelism. Third, DMI behaves as
a remote swap system by allocating huge global address spaces
across the memory pools on multiple nodes. When the mem-
ory pool is saturated over repeated remote pagings, DMI sweeps
the memory pool on the basis of a page replacement algorithm.
Fourth, DMI can maintain the cache coherence over the dynamic
joining and leaving of processes during one computation and thus
scales up or down the parallel computation. As shown in Fig. 11,
the application programmer only has to create a sufficient num-
ber of threads using DMI create() and call DMI yield() periodi-
cally at short intervals in each thread. Then DMI transparently
migrates the thread inside the DMI yield() if necessary, and thus
scales up or down the computation in response to the dynamic
change of available nodes. In essence, we emphasize that the
modification required to make a normal non-reconfigurable DMI
program reconfigurable is just adding DMI yield() to the DMI
program. We also emphasize that if each instance of DMI is im-
plemented as a half-process, no inconvenient syntax restriction
is imposed on the application programmer as discussed in Sec-

tion 5.1.
DMI is implemented as a static library for C in approximately

27,000 lines of C program. DMI provides 83 APIs to support and
optimize a broad range of high-performance parallel scientific ap-
plications, for example, APIs for memory allocation/deallocation,
memory read/write, asynchronous memory read/write, a mutual
exclusion, collective synchronization, user-defined atomic in-
struction, aggregating multiple discrete reads/writes, expressing
irregularly decomposed domains and so on [18].
5.2.2 Replacing a Thread with a Half-process

The first essential modification to the original DMI is re-
placing pthread xxxx() with corresponding halfproc xxxx(). A
half-process cannot use glibc’s pthread library because the
pthread library assumes that global variables and stack vari-
ables are shared between instances but the half-process places
global variables and stack variables on the non-shared address
space. Thus, we implement halfproc mutex xxxx() and half-
proc cond xxxx() not using any global variables and stack vari-
ables but using a futex() system call instead. We also imple-
ment halfproc create()/halfproc join()/halfproc detach(), which
creates/joins/detaches a half-process respectively.

The second essential modification is replacing malloc()/
realloc()/free() with halfproc malloc()/halfproc realloc()/
halfproc free() because the normal malloc()/realloc()/free()
internally issue mmap() without MAP HALFPROC option. We
implement halfproc malloc()/halfproc realloc()/halfproc free()
so that they internally issue mmap() with MAP HALFPROC
option.

The third modification is replacing normal memcpy() with dm-
read()/dmwrite() from/to the non-shared address space to/from
the address space of another half-process. For example, assume
that a half-process p running on a node n issues DMI read(addr,
size, buf, ...), which reads size bytes of data from the global
address addr to the half-process p’s address space buf. If the
data does not exist on the memory pool of the node n, a read fault
occurs and the data is transferred to the node n from the node
that owns the data at the time. This data is received by the re-
ceiver half-process on the node n (c.f., Fig. 9). Then, the receiver
half-process stores this data to the non-shared address space of
the half-process p by using dmwrite() instead of normal mem-
cpy() since the receiver half-process cannot normally access the
non-shared address space of the half-process p.

The fourth modification is replacing the checkpoint/restart
mechanism of a thread with the checkpoint/restart mechanism of
a half-process, in which only the memory allocated on the non-
shared address space is checkpointed/restarted.

Consequently, we need these several simple modifications but
need not modify the basic data structures and the data sharing
algorithm used in the original DMI. Below, we refer to the orig-
inal multi-threaded version of DMI as DMI+thread and the half-
process version of DMI as DMI+half-process.

5.3 Performance and Programmability Evaluations
In this sub-section, we evaluate the performance of DMI+half-

process using real-world parallel applications such as PageRank
calculation and an finite element method.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

Fig. 12 The execution time of the N-body problem.

Fig. 13 The weak scalability of the N-body problem.

5.3.1 Experimental Settings
The experimental platform is the cluster environment com-

posed of 16 nodes interconnected by 10 Gbit Ethernet. The ar-
chitecture of each node is described in Section 4.4.1. We used
gcc 4.3.2 with an -O3 option for DMI, and OpenMPI 1.4.2 and
mpich2-1.2.1p1 with an -O3 option for MPI. When we executed
a DMI/MPI program using n (1 ≤ n ≤ 128) cores, we created 8
threads/half-processes/processes on �n/8� nodes and the remain-
ing n−8×�n/8� threads/half-processes/processes on another node.
5.3.2 An N-body Problem

This experiment solves an N-body problem. The experiment
divides 24 × 24 × 24 particles evenly in the direction of the z-
axis among n processors and assigns 24 × 24 × 24/n particles to
each processor. Each processor repeats below: (1) each proces-
sor sends the positions of the particles assigned to the processor
to all other processors, namely allgather communication in to-
tal, by which all the processors can know the positions of all the
particles, and (2) each processor concurrently calculates the in-
teraction between the particles assigned to the processor and all
the particles and then updates the positions and velocities of the
particles assigned to the processor.

First, in order to compare the basic performance of DMI+half-
process with other frameworks, Fig. 12 shows the execution time
of mpich2, OpenMPI, DMI+thread (without any reconfigration)
and DMI+half-process (without any reconfigration). Figure 13
shows their weak scalability. The reason why we compare
DMI’s performance with MPI’s performance is that MPI is a
de facto standard in high-performance parallel programming and
is easy to optimize its performance appropriately. Figures 12

Fig. 14 The execution time of each iteration of the N-body problem with
reconfiguration.

Table 1 Each reconfiguration time and transferred data size at each
reconfiguration.

N-body PageRank FEM
time(DMI+thread, 32→128 cores) [sec] 5.84 8.66 10.1
time(DMI+thread, 128→64 cores) [sec] 1.02 5.42 5.80

transferred data [GB] 0.671 13.7 15.2
time(DMI+half-process, 32→128 cores) [sec] 8.12 33.4 19.8
time(DMI+half-process, 128→64 cores) [sec] 3.39 8.85 7.46

transferred data [GB] 0.940 14.2 14.4

and 13 indicate that DMI+half-process performed equally well
to DMI+thread, in other words, DMI+half-process caused little
overhead. Thus, the half-process enables not only convenient but
also high-performance intra-node communications. Figures 12
and 13 also indicate that DMI+half-process performed equally
well to mpich2 and OpenMPI.

Second, Fig. 14 shows the execution time of each itera-
tion in DMI+thread and DMI+half-process, where we initially
spawned 128 threads, changed available nodes dynamically, and
let DMI+thread and DMI+half-process reconfigure their com-
putational scale through thread migration. Specifically, (1) we
started the computation on 4 nodes (32 cores in total, 4 threads
per core), (2) added 12 nodes (128 cores in total, 1 thread per
core) at the end of the 30-th iteration, and then (3) removed 8
nodes (64 cores in total, 2 thread per core) at the end of the
60-th iteration. Actually, it is impossible to migrate a thread
in DMI+thread, if the thread is using global variables or any
address in the stack and heap memory of the thread is already
used in the destination process. To address these issues, first,
we described the program without any global variables. Sec-
ond, we introduced special memory allocation/deallocation APIs
(DMI thread mmap()/DMI thread munmap()) that guarantee to
allocate/deallocate the stack and heap memory so that its mem-
ory address never conflicts with the stack and heap memory
of all other threads in all nodes [17]. When the thread mi-
grates in DMI+thread, we migrate only the memory allocated by
DMI thread mmap() into the destination process.

Figure 14 indicates that DMI+half-process performed equally
well to DMI+thread, which implies that DMI+half-process
caused little overhead, and that both DMI+thread and DMI+half-
process can adapt the application parallelism efficiently to the
increase and decrease of available nodes through reconfiguration.

Third, Table 1 shows each reconfiguration time in Fig. 14

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

Table 2 The number of lines of code change required to convert a non-
reconfigurable DMI program to a reconfigurable DMI program.

N-body PageRank FEM
DMI+thread 5 18 62

DMI+half-process 1 1 1

(Nbody), Fig. 18 (PageRank) and Fig. 22 (FEM). Table 1 also
shows the total size of transferred data through thread migration
at each reconfiguration. The total size of transferred data was
equal for both cases of 32→128 cores and 128→64 cores, since
120 threads were migrated for both cases *7. The difference of
the transferred data size between DMI+thread and DMI+half-
process comes from the difference of what data is checkpointed
in their checkpointing algorithms. For example, global vari-
ables are checkpointed in DMI+half-process but are not check-
pointed in DMI+thread (since in the first place DMI+thread as-
sumes that no global variables are used in a program). The rea-
son why DMI+half-process took more reconfiguration time than
DMI+thread in Table 1, which cannot be explained just by the
difference of the transferred data size, will be shown in the next
subsection.

Fourth, to compare the programmability of DMI+half-
process with that of DMI+thread, Table 2 shows the num-
ber of lines of code change that is required to convert
a non-reconfigurable normal DMI program to a reconfig-
urable DMI program. In DMI+thread, we needed to add
DMI yield() (one line) and convert four mmap()/munmap()s to
DMI thread mmap()/DMI thread munmap() (four lines). Fur-
thermore, we needed to take great care so that all the execu-
tion states of each thread exist on the memory allocated by
DMI thread mmap() at the point of DMI yield(), so that all the
execution states migrate at the thread migration. Specifically, we
needed to care that no global variables are used directly or in-
directly (through glibc libraries) and the memory of each thread
does not contain any pointers to another thread’s memory *8. On
the other hand, in DMI+half-process, we needed to add only one

line of code (DMI yield()) at the head of each iteration. Also, no
coding care about global variables was necessary.
5.3.3 PageRank Calculation

This experiment calculates a PageRank [29] of a large-scale
web graph. The experiment generates a web graph similar to the
one in the real world with the following properties:
• The total number of vertices is 128 million.
• The entire graph is composed of 128 sub-graphs, each of

which has 1 million vertices.
• The in-degrees of vertices are distributed log-normally along

the following probability density function [29]:

p(d) =
1

dσ
√

2π
e−((ln d−μ)/σ)2/2

where p(d) is the number of vertices with in-degree d, μ and

*7 Naturally, the number of threads migrated at reconfiguration depends on
thread scheduling policy but the scheduling policy is out of the scope of
this paper

*8 For fair comparison of the number of lines of code change, we describe
the original non-reconfigurable DMI program so that it uses no global
variables and any pointers to other threads’ memory. In other words, the
number of lines of code change shown in Table 2 does not reflect the
“care” that we have to take in DMI+thread.

Fig. 15 The execution time of the PageRank calculation.

Fig. 16 The weak scalability of the PageRank calculation.

σ are the mean and the standard deviation, respectively, of
the corresponding normal distribution.

• Edges are directed and the total number of edges is
447 million. Each vertex has 4 incoming edges in average
and the standard deviation of the number of incoming edges
is 1.3. For any vertex vi, the rate of the incoming edges from
the vertex in the sub-graph to which the vertex vi belongs to
the incoming edges from the vertex in other sub-graphs is
0.1. Consequently, the total number of edge-cuts between
128 sub-graphs is 44 million.

Let n be the total number of nodes in the web graph, vi be a
vertex (a web page or a person in a social graph), ad j+(vi) be a
set of vertices to which the vertex vi links, and ad j−(vi) be a set
of vertices which have links to the vertex vi. The PageRank of the
vertex vi is defined as the value of rank(vi, t) when the following
recurrence formula converges [29]:

rank(vi, t)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1/n if t = 0,

0.15/n + 0.85
∑
v j∈ad j−(vi) rank(v j, t − 1)/|ad j+(v j)| if t ≥ 1.

The experiment implements this iterative algorithm in DMI and
MPI.

First, Fig. 15 shows the execution time of mpich2, Open-
MPI, DMI+thread (without any reconfiguration) and DMI+half-
process (without any reconfiguration), and Fig. 16 shows their
weak scalability. Figures 15 and 16 indicate that DMI+half-
process performed worse than DMI+thread when 128 cores are
used. The detailed performance profiling revealed that this over-
head primarily comes from the following two reasons.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

The first reason is the overhead of dmwrite() issued by
the receiver half-process of DMI. As we mentioned in Sec-
tion 5.2.2, DMI+half-process has to issue dmread()/dmwrite()
instead of memcpy() when a half-process reads/writes another
half-process’s address space. In particular, DMI has only one re-
ceiver half-process for one node, which receives messages from
another node and handles the messages one by one. Here the
receiver half-process has to use dmwrite() when the receiver half-
process writes received data to a computational half-process’s ad-
dress space. For example, assume that a read fault happens at a
computational half-process of a node n. The read fault is noti-
fied to an owner node of the page, and the owner node transfers
the latest page to the receiver half-process of the node n. Then
the receiver half-process writes the received latest page to the
computational half-process’s address space. At this point, the re-
ceiver half-process needs to use dmwrite(). The reader may think
it strange why the receiver half-process needs to use dmwrite()
instead of memcpy() on the shared address space. This is be-
cause the target address space is not the shared address space
but the computational half-process’s address space. Specifically,
when DMI read(addr, size, buf, ...) is issued by the computa-
tional half-process, if the buf belongs to the shared address space,
then the receiver half-process can indeed use normal memcpy() to
copy the received latest page to the buf. However, if the buf be-
longs to the computational half-process’s address space, then the
receiver half-process needs to use dmwrite(). Note that “whether
an application programmer should place buf on the shared ad-
dress space or the computational half-process’s address space” is
determined not by “whether the application programmer wants
to let the receiver half-process use dmwrite() or memcpy()” but
by “whether the buf should be migrated or not when the half-
process migrates to another node.” In the first place, in this ex-
periment we are not thinking of the situation that the application
programmer places buf on the shared address space, because (1)
most buffers allocated on each half-process must be specific to the
half-process and thus should be migrated at reconfiguration and
because (2) we are assuming that we allow to add only one line
of code (DMI yield()) for making the program reconfigurable *9.
Getting back to the topic of the overhead, in this way, the receiver
half-process needs to use dmwrite(). And the memory copy of
dmwrite() is much slower than the memory copy of memcpy(),
since context switch to the kernel is associated with dmwrite()
in order to achieve direct memory access between different ad-
dress spaces. In addition, the number of dmwrite()s increases,
as the number of messages that the receiver half-process has to
handle increases, in other words, as the number of computational
half-processes (i.e., cores) increases. This is the reason why the
overhead of DMI+half-process became larger, as the number of
cores increased in Fig. 15 and Fig. 16. It is considered that we can
reduce this overhead by increasing the number of receiver half-
processes and thus reducing the bottle-neck of handling received
messages. Also, the primary reason why DMI+half-process took
more reconfiguration time than DMI+thread in Table 1 can be
explained by the overhead of dmwrite()s issued by the single re-

*9 Placing buf on the shared address space requires more changes in the
program.

Fig. 17 The time of all-to-all communications using 128 cores (8 cores ×
16 nodes).

ceiver half-process. At each reconfiguration, the receiver half-
process needs to copy much received data to each computational
half-process’s address space.

The second reason is that we implemented half-
proc malloc()/halfproc realloc()/halfproc free() with Kernighan
& Richie’s malloc algorithm [31], the performance of which
is poor in a multi-threaded program. It is considered that we
can solve this problem by implementing more sophisticated
malloc algorithm for halfproc malloc()/halfproc realloc()/
halfproc free(), such as Tcmalloc [1] and Hoard [12]. More de-
tailed quantitative discussions about this overhead of DMI+half-
process are described in another paper [16].

Figures 15 and 16 also indicate that DMI+thread and
DMI+half-process outperformed much mpich2 and OpenMPI.
The reason for this low performance of mpich2 and OpenMPI
is that the communication performance of mpich2 and OpenMPI
becomes poor as socket connections become dense. Specifically,
in each iteration of this PageRank calculation, in case of using
128 cores, each core sends approximately 21.5 KB of data to all
other 127 cores, literally an “all-to-all” dense communication.
Figure 17 shows the potential communication performance of
DMI+thread, mpich2 and OpenMPI, that is, the time required for
each of 128 cores to send x bytes of data to all other 127 cores
simultaneously. Each point in Fig. 17 is the average time of 10
runs and the error bar of each point shows the maximum time and
the minimum time in the 10 runs. Figure 17 indicates that Open-
MPI’s performance was pretty noisy and in particular the perfor-
mance of x = 21.5 KB was better in the order of DMI+thread,
mpich2 and OpenMPI, which accounts for the low performance
of mpich2 and OpenMPI in the PageRank calculation.

Second, Fig. 18 shows the execution time of each iteration in
DMI+thread and DMI+half-process, where we initially spawned
128 threads and changed available nodes dynamically in the same
manner as explained in Section 5.3.2. Figure 18 indicates that
both DMI+thread and DMI+half-process can adapt the applica-
tion parallelism efficiently to the increase and decrease of the
available nodes through reconfiguration. However, the perfor-
mance of DMI+half-process is worse than that of DMI+thread
because of the overhead of DMI+half-process that we mentioned
before.

Third, with respect to programmability, we needed to change
18 lines of code in DMI+thread, taking care that all the execu-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

Fig. 18 The execution time of each iteration of the PageRank calculation
with reconfiguration.

Fig. 19 Stress analysis using the finite element method.

tion states exist on the memory allocated by DMI thread mmap()
at the point of DMI yield(). On the other hand, in DMI+half-
process, only one line of code (DMI yield()) at the head of each
iteration was required.
5.3.4 An Finite Element Method

This experiment analyzes the stress of the 3-dimensional cube
with the force and the boundary conditions shown in Fig. 19 us-
ing the finite element method with 903 elements. These elements
are distorted up to 200 degrees around the z-axis based on the
Sequential Gauss Algorithm. This finite element method is re-
duced to the problem of solving the linear simultaneous equation
Ax = b, where A is the sparse matrix representing the connec-
tivity between the elements and b is the vector representing the
force and the boundary conditions. This is a real-world and hard-
to-converge problem used in the parallel programming competi-
tion in Japan [2] and various engineering methods are essential
to solve. Omitting details, we use the iterative method called the
BiCGSafe method, with an irregular domain decomposition con-
sidering load balancing, deep domain overlapping using the Re-
stricted Additive Schwarz Method, the RCM ordering of the ele-
ments of each domain and the preconditioning using the blocked
ILU decomposition with fill-ins, which is the champion algorithm
of the competition.

First, Fig. 20 shows the execution time of mpich2, Open-
MPI, DMI+thread (without any reconfiguration) and DMI+half-
process (without any reconfiguration), and Fig. 21 shows their
weak scalability. Figures 20 and 21 indicate that DMI+half-
process performed worse than DMI+thread because of the over-
head of DMI+half-process. Figures 20 and 21 also indicate that
even DMI+thread achieved lower scalability than mpich2. This

Fig. 20 The execution time of the finite element method.

Fig. 21 The weak scalability of the finite element method.

Fig. 22 The execution time of each iteration of the finite element method
with reconfiguration.

is because the performance of the collective function for syn-
chronizing all 128 threads, which is called as much as 22 times
in each iteration of the BiCGSafe method, becomes worse than
that of MPI, as the number of threads increases. Furthermore,
Figs. 20 and 21 indicate that OpenMPI performed pretty poor
compared to other frameworks. Here this low performance of
OpenMPI was attributed to the slow point-to-point send/receive
communication of OpenMPI. Specifically, it took 2.39 seconds in
mpich2 but 9.03 seconds in OpenMPI to simply send and receive
65,536 bytes of data 10,000 times between two nodes.

Second, Fig. 22 shows the execution time of each iteration in
DMI+thread and DMI+half-process, where we initially spawned
128 threads and changed available nodes dynamically in the same
manner as explained in Section 5.3.2.

Third, with respect to programmability, we needed to change

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

62 lines of code in DMI+thread with the coding care. On
the other hand, in DMI+half-process, only one line of code
(DMI yield()) at the head of each iteration was required.
5.3.5 Discussion

As we discussed, one of the potential applicabilities of a half-
process is transparent kernel-level thread migration, solving the
problem of sharing global variables between migrating kernel-
level threads in existing frameworks. In this section, we applied
the kernel-level thread migration to the programming framework
that achieves computational reconfiguration just by creating a
sufficient number of half-processes. As a result, DMI+half-
process indeed delivers good programmability for reconfigura-
tion. However, as far as the performance of such a reconfigurable
framework is concerned, considering the fact that multiple half-
processes can run on one core when the scale of a computation
shrinks and that the overhead of the context switching between
half-processes (this is almost equivalent to that between normal
processes) is larger than that between kernel-level threads and
much larger than that between user-level threads [14], a user-level
thread with the support of transparent migration is considered
to be a better choice than a half-process for the reconfigurable
framework.

6. Conclusions

The choice of “a thread or a process” is too much “all-or-
nothing.” This paper proposed a half-process, which has both
the non-shared address space privatized to the half-process and
the shared address space between half-processes. Unlike inter-
process shared memory, the half-process realizes the shared ad-
dress space semantically equivalent to the single address space
between threads. We discussed the potential applicability of the
half-process for multi-thread programming with thread-unsafe
libraries, intra-node communications in parallel programming
frameworks and transparent kernel-level thread migration. In
particular, we applied the half-process to the transparent kernel-
level thread migration based on a PGAS programming framework
named DMI and confirmed that just by adding DMI yield() to
a normal non-reconfigurable DMI program makes the DMI pro-
gram reconfigurable without no inconvenient syntax restriction
about using global variables. Also we evaluated the performance
of the half-process using real-world parallel applications such as
PageRank calculation and an finite element method. To the best
of our knowledge, the design and the kernel-level implementa-
tion of the half-process are novel. Also, this is the first work that
solves the problem of sharing global variables between migrat-
ing kernel-level threads and thus achieves transparent kernel-level
thread migration.

Reference

[1] TCMalloc (online), available from
〈http://goog-perftools.sourceforge.net/doc/tcmalloc.html〉.

[2] The 2nd Parallel Programming Contest on Cluster Systems, available
from 〈https://www2.cc.u-tokyo.ac.jp/procon2009-2/〉.

[3] Antoniu, G., Bouge, L. and Namyst, R.: An Efficient and Transpar-
ent Thread Migration Scheme in the PM2 Runtime System, Proc.
IPPS/SPDP’99 Workshops Held in Conjunction with the 13th Inter-
national Parallel Processing Symposium and 10th Symposium on Par-
allel and Distributed Processing, pp.496–510 (1999).

[4] Antoniu, G. and Perez, C.: Using Preemptive Thread Migration
to Load-Balance Data-Parallel Applications, Proc. 5th International
Euro-Par Conference on Parallel Processing, pp.117–124 (1999).

[5] Brightwell, R. and Pedretti, K.: Optimizing Multi-core MPI Collec-
tives with SMARTMAP, 2009 International Conference on Parallel
Processing Workshops, pp.370–377 (Sep. 2009).

[6] Brightwell, R., Pedretti, K. and Hudson, T.: SMARTMAP: Operating
system support for efficient data sharing among processes on a multi-
core processor, Proc. 2008 ACM/IEEE Conference on Supercomput-
ing, pp.1–12 (Nov. 2008).

[7] Buntinas, D., Goglin, B., Goodell, D., Mercier, G. and Moreaud, S.:
Cache-Efficient, Intranode, Large-Message MPI Communication with
MPICH2-Nemesis, 2009 International Conference on Parallel Pro-
cessing, pp.462–469 (Sep. 2009).

[8] Buntinas, D., Mercier, G. and Gropp, W.: Data Transfers between
Processes in an SMP System: Performance Study and Application to
MPI, 2006 International Conference on Parallel Processing, pp.487–
496 (Aug. 2006).

[9] Buntinas, D., Mercier, G. and Gropp, W.: Design and Evaluation of
Nemesis, a Scalable, Low-Latency, Message-Passing Communication
Subsystem, 6th IEEE International Symposium on Cluster Computing
and the Grid, pp.521–530 (May 2006).

[10] Chai, L., Hartono, A. and Panda, D.K.: Designing High Performance
and Scalable MPI Intra-node Communication Support for Clusters,
2006 IEEE International Conference on In Cluster Computing, pp.1–
10 (Sep. 2006).

[11] Cronk, D., Haines, M. and Mehrotra, P.: Thread Migration in the Pres-
ence of Pointers, Proc. 30th Hawaii International Conference on Sys-
tem Sciences: Software Technology and Architecture, Vol.1, pp.292–
302 (1997).

[12] Berger, E.D., Mckinley, K.S., Blumofe, R.D. and Wilson, P.R.: Hoard:
A Scalable Memory Allocator for Multithreaded Applications, Proc.
9th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp.117–128 (Dec. 2000).

[13] Dimitrov, B. and Reg, V.: Arachne: A portable threads system sup-
porting migrant threads on heterogeneous network farms, IEEE Trans.
on Parallel and Distributed Systems, Vol.9, pp.459–469 (May 1998).

[14] Anderson, T.E., Bershad, B.N., Lazowska, E.D. and Levy, H.M.:
Scheduler Activations: Effective Kernel Support for the User-level
Management of Parallelism, ACM Trans. on Computer Systems,
Vol.10, No.1 (Feb. 1992).

[15] Goglin, B.: High Throughput Intra-Node MPI Communication with
Open-MX, 2009 Parallel, Distributed and Network-based Processing,
pp.173–180 (Feb. 2009).

[16] Hara, K.: A PGAS Programming Framework for Reconfigurable and
High-Performance Parallel Computations, Master thesis, the Univer-
sity of Tokyo (Feb. 2011).

[17] Hara, K., Nakashima, J. and Taura, K.: A PGAS Framework Achiev-
ing Thread Migration Unrestricted by the Address Space Size (in
Japanese), IPSJ Trans. on Programming (2011).

[18] Hara, K., Taura, K. and Chikayama, T.: DMI: A Large Distributed
Shared Memory Interface Supporting Dynamically Joining/Leaving
Computational Resources (in Japanese), IPSJ Trans. on Programming,
3 (2010).

[19] Huang, C., Lawlor, O. and Kale, L.V.: Adaptive MPI, 16th Interna-
tional Workshop on Languages and Compilers for Parallel Comput-
ing, pp.306–322 (Oct. 2003).

[20] Huang, C., Zheng, G., Kale, L. and Kumar, S.: Performance Evalua-
tion of Adaptive MPI, 11th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp.12–21 (Mar. 2006).

[21] Duell, J.: Pthreads or Processes: Which is Better for Implementing
Global Address Space Languages?

[22] Jiang, H. and Chaudhary, V.: Compile/Run-Time Support for Thread
Migration, Proc. 16th International Parallel and Distributed Process-
ing Symposium, pp.58–66 (2002).

[23] Jiang, H. and Chaudhary, V.: MigThread: Thread Migration in DSM
Systems, International Conference on Parallel Processing, p.581
(2002).

[24] Jiang, H. and Chaudhary, V.: On Improving Thread Migration: Safety
and Performance, Proc. 9th International Conference on High Perfor-
mance Computing, pp.474–484 (2002).

[25] Jiang, H. and Chaudhary, V.: Thread Migration/Checkpointing for
Type-Unsafe C Programs, International Conference on High Perfor-
mance Computing, Vol.2913, pp.469–479 (Nov. 2003).

[26] Jin, H.-W., Sur, S., Chai, L. and Panda, D.K.: Lightweight kernel-level
primitives for high-performance MPI intra-node communication over
multi-core systems, 2007 IEEE International Conference on Cluster
Computing, pp.446–451 (Sep. 2007).

[27] Ke, J. and Speight, E.: Tern: Thread Migration in an MPI Runtime

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

Environment, Technical Report, Cornell (Nov. 2001).
[28] Lai, P., Sur, S. and Panda, D.K.: Designing Truly One-sided MPI-

2 RMA Intra-node Communication on Multi-core Systems, Interna-
tional Computing Conference, Vol.25, pp.3–14 (May 2010).

[29] Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I.,
Leiser, N. and Czajkowski, G.: Pregel: A System for Large-scale
Graph Processing, Proc. 2010 International Conference on Manage-
ment of Data, pp.135–146 (2010).

[30] Milton, S.: Thread Migration in Distributed Memory Multicomputers,
Technical Report, Australia National University (1998).

[31] Richie, D.M. and Kernighan, B.W.: The C Programming Language,
Prentice Hall (1990).

[32] Rabenseifner, R., Hager, G. and Jost, G.: Hybrid MPI/OpenMP Par-
allel Programming on Clusters of Multi-Core SMP Nodes, 2009 Par-
allel, Distributed and Network-based Processing, pp.427–436, (Feb.
2009).

Kentaro Hara was born in 1986. He re-
ceived his M.E. degree from the Graduate
School of Information Science and Tech-
nology, the University of Tokyo in 2011.
He has been working as a software engi-
neer at Google since 2011.

Kenjiro Taura was born in 1969. He re-
ceived his Ph.D. degree from the Gradu-
ate School of Science, the University of
Tokyo in 1997. He researched in the
Graduate School of Science at the Uni-
versity of Tokyo as an assistant professor
from 1996 to 2001. After that, he has been
researching in the Graduate School of In-

formation Science and Technology as a lecturer from 2001 to
2002 and then as an associate professor since 2002.

c© 2012 Information Processing Society of Japan

