
eee

e

ee
e

e

e
e

e
e
e

e

ee

v A PGAS Framework Supporting a
Parallel Computation Expanding and

Shrinking its Scale Dynamically v

Taura Lab, M2, Kentaro Hara

2010.4.30

eee

e

ee
e

e

e
e

e
e
e

e

ee

v 1. Introduction

1. Introduction Q 3
nn Backgrounds and a goal

ä Backgrounds: Large-scale parallel scientific computings
Ô Stress analyses
Ô Fluid analyses
Ô Earthquake simulations
Ô ...

ä Goal: Develop a framework which supports these large-scale paral-
lel scientific computings on a cloud

1. Introduction Q 4
nn What is a cloud?

ä Mechanism:
Ô A provider manages a data center and provides its resources as a

service
Ô A user can use as many resources as needed in a pay-as-you-go sys-

tem
ä Model: Multiple resources are used by multiple users

1. Introduction Q 5
nn An example of the cloud(1)

ä When the load of a user A increases, the computational scale of the
user A expands

1. Introduction Q 6
nn An example of the cloud(2)

ä Later, when the load of a user B increases, the computational scale of
the user B expands instead of shrinking the scale of the user A

1. Introduction Q 7
nn The essence of the cloud

ä Multiple resources are used by multiple users
ä Hence available resources for each user change dynamically in re-

sponse to the overall load

1. Introduction Q 8
nn Then, how should a parallel computation run on the cloud?

ä Targeted apps: Long-running large-scale parallel scientific comput-
ings
Ô Finite element methods (FEM)
Ô Particle methods

ä These apps should run expanding and shrinking their scale dynami-
cally in response to the available resources at the time[Chaudhart et
al,2006]
Ô “But... too difficult to develop such an elastic parallel program!!!”

1. Introduction Q 9
nn A required programming model

(1) A programmer only has to describe the parallelism of an app
(2) Then, a framework expands and shrinks the computational scale

automatically and dynamically

1. Introduction Q 10
nn My proposal: DMI(Distributed Memory Interface)

(1) A programmer only has to create a sufficient number of threads
(2) A framework schedules these threads dynamically on available re-

sources
(3) A high-performance global address space (GAS) is provided for a

data sharing layer between the threads

1. Introduction Q 11
nn Programming interfaces of DMI

ä Similar to a (normal) shared memory environment
Ô Mmap/Munmap on the GAS
Ô Read/Write from/to the GAS
Ô Synchronization
Ô Create/Join/Detach threads
Ô ... (73 APIs in total)

ä A shared library for C

1. Introduction Q 12
nn Primary elemental techniques of DMI

ä Designing the GAS
Ô How can the performance of the GAS be improved?
Ô How can the GAS support dynamic joining/leaving of nodes?

ä Thread migration
Ô How can a live thread migrate safely?

eee

e

ee
e

e

e
e

e
e
e

e

ee

v 2. Related Work

2. Related Work Q 14
nn Google App Engine (GAE)

ä A user can run Web apps on the Google’s efficient infrastructure
ä GAE scales up/down the apps automatically and rapidly in response

to the increase/decrease of web requests
ä Demerit : Each request must be processed within 30 seconds

Ô Almost impossible to run long-running large-scale parallel scientific
computings

2. Related Work Q 15
nn GAE vs DMI

ä Requirement: Schedule resources rapidly between users
ä How do GAE and DMI fulfill the requirement?

Ô GAE can schedule resources only by web request
© Hence each request must be processed in a short time
© Short-running web apps

Ô DMI can schedule resources (almost) anytime by migrating threads
© Hence each thread can run a long time
© Long-running large-scale parallel scientific computings!

eee

e

ee
e

e

e
e

e
e
e

e

ee

v 3. Designing a GAS

3. Designing a GAS Q 17
nn What is a GAS?

ä A thread can access data on physically distributed memories by read-
ing/writing from/to the globally unique address of the data

3. Designing a GAS Q 18
nn A naive implementation of the GAS

ä Divide data into pages of suitable size (PGAS)
ä Determine one fixed owner for each page

Ô The owner always manages the latest page and its coherency

3. Designing a GAS Q 19
nn Discussion1: Should an owner be fixed?

ä If the computational scale changes, the affinity of each thread for
pages also changes
Ô An owner should migrate dynamically according to access patterns
Ô Tradeoff: But too much owner migration increases the overhead of

tracing the location of the owner
ä Point: Whether the owner should be fixed or not depends on the ac-

cess characteristics of the page

3. Designing a GAS Q 20
nn Discussion2: Should a page be cached?

ä It is inefficient to communicate with an owner at every read fault
Ô A page should be cached
Ô Tradeoff: But caching increases the overhead of coherency manage-

ment
ä Point: Whether the page should be cached or not depends on the ac-

cess characteristics of the page

3. Designing a GAS Q 21
nn A summary and my proposal

ä Summary:
Ô It is important to allow a programmer to specify the access charac-

teristics of each page explicitly
ä My proposal: Selective cache read/write

Ô A programmer can explicitly select the behavior of a page fault at
every read/write
© Whether an owner should be fixed or not
© Whether a page should be cached or not

• No cache, an invalidate cache, an update cache

3. Designing a GAS Q 22
nn Other optimization methods

ä Productive APIs for communicating the values of boundary points in
parallel scientific computings with domain decompositions

ä Automatic load balancing of data transfers
ä Aggregation of discrete accesses
ä Asynchronous read/write
ä User-defined page size
ä User-defined read-modify-write

3. Designing a GAS Q 23
nn Joining of a node to the GAS

3. Designing a GAS Q 24
nn Leaving of a node from the GAS

ä DMI defines protocols for consistency maintenance strictly

3. Designing a GAS Q 25
nn An experiment: An FEM

ä A stress analysis using an FEM
Ô A hard-to-converge problem based on the real-world engineering
Ô The problem used in the programming contest on supercomputers

ä Environment: 8 cores × 16 nodes, 1GbitE

3. Designing a GAS Q 26
nn The result: The scalability of the FEM

ä Speedup = (the execution time when executed using 1 processor) /
(the execution time when executed using n processors)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

sp
ee

du
p

(p
er

 i
te

ra
ti

on
)

of processors

mpich2
OpenMPI

DMI

3. Designing a GAS Q 27
nn The result: The scalability of other apps

ä Matrix multiplication
ä Integer sorting

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 20 40 60 80 100 120 140

sp
ee

du
p

of processors

Matrix multiplication

mpich2
OpenMPI

DMI

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140
sp

ee
du

p
of processors

Integer sorting

mpich2
OpenMPI

DMI

eee

e

ee
e

e

e
e

e
e
e

e

ee

v 4. Thread Migration

4. Thread Migration Q 29
nn Assumptions: Threads of DMI

ä Each process has multiple threads
ä Memory of a thread = Register + Stack + Heap
ä Each thread just accesses the memory of the thread

Ô Data sharing between threads is achieved through a GAS
Ô No file I/O, no network I/O

4. Thread Migration Q 30
nn Thread migration in DMI

ä Thread migration:
Ô Stop a thread on the source node
Ô Migrate the memory of the thread
Ô Resume the thread on the destination node

ä To avoid pointer invalidation, the memory of the thread must be al-
located on the same address[Antoniu et al,1999]
Ô But there is no guarantee that the appropriate addresses are not used

at the destination node

4. Thread Migration Q 31
nn How can memory be allocated on the same address?

ä An existing approach[Weissman et al,1998]:
Ô Divide the whole address space (ex.232) and fix statically the ad-

dresses that each thread can use
Ô Guarantee the global uniqueness of the addresses used by each

thread
ä “This is impractical in a 32bit arch, but is practical in a 64bit

arch”[Itzkovitz et al,1998][Weissman et al,1998][Thitikamol et al,1999]

4. Thread Migration Q 32
nn Is it really practical in a 64bit arch?

ä The size of the address space of most 64bit arches is 247

ä “The limit is approaching!”
Ô Thread migration unrestricted by the size of the address space is

required

4. Thread Migration Q 33
nn My proposal: Random-address(1)

(1) Determine the addresses used by each thread randomly
(2) If we are lucky, addresses do not collide when a thread migrates

4. Thread Migration Q 34
nn My proposal: Random-address(2)

(3) If we are not lucky, addresses collide
(a) Then, create a new process (=a new address space) on the destina-

tion node
(b) Migrate the thread into the new process

ä Note: This approach cannot be achieved without the GAS supporting
dynamic joining of nodes

4. Thread Migration Q 35
nn How to minimize the probability of the address collision

ä One of the optimized solutions: “Use addresses as continuous as pos-
sible”

4. Thread Migration Q 36
nn An experiment: An FEM(1)

ä A stress analysis using an FEM
ä Environment: 8 cores × 16 nodes, 10GbitE

4. Thread Migration Q 37
nn An experiment: An FEM(2)

ä Repeat until convergence
ä Only insert a chance of cooperative thread migration at the head of

each iteration
solve A−→x =

−→
b :

K = preconditioned matrix of A
−→r0 =

−→
b − A−→x

initialize vectors −→x0,−→r0,
−→
r
∗
0 ,−→p0,−→u0,−→y0,−→v0 properly

initialize β−1, ξ0, η0 properly
for n = 0, 1, 2, . . . until convergence do

DMI_yield()
−→pn = K

−1−→rn + βn−1(
−−−→pn−1 − −−−→un−1)

A−→pn = AK
−1−→rn + βn−1(A

−−−→pn−1 − A−−−→un−1)
αn = (

−→
r
∗
0 ,−→rn)/(

−→
r
∗
0 , A−→pn)

ξn = ((−→yn,−→yn)(−→vn,−→rn) − (−→yn,−→rn)(−→vn,−→yn))/((−→vn,−→vn)(−→yn,−→yn) − (−→yn,−→vn)(−→vn,−→yn))
ηn = ((−→vn,−→vn)(−→yn,−→rn) − (−→yn,−→vn)(−→vn,−→rn))/((−→vn,−→vn)(−→yn,−→yn) − (−→yn,−→vn)(−→vn,−→yn))
−→un = K

−1
(ξnA−→pn + ηn

−→yn) + ηnβn−1
−−−→un−1

−→zn = ξnK
−1−→rn + ηn

−−−→zn−1 − αn
−→un

−−−→yn+1 = ξnAK
−1−→rn + ηn

−→yn − αnA−→un−−−→xn+1 = −→xn + αn
−→pn + −→zn−−−→rn+1 = −→rn − αnA−→pn − −−−→yn+1

βn = (αn/ξn)(
−→
r
∗
o ,−−−→rn+1/(

−→
r
∗
0 ,−→rn))

endfor

4. Thread Migration Q 38
nn An experiment: An experimental scenario

ä Create 128 threads
Ô Each thread consumes 500MB memory (64GB in total)
Ô A GAS consumes 335MB memory

ä Change available resources:
(1) Run on the nodes 1∼8
(2) Add the nodes 9∼16
(3) Remove the nodes 1∼12

4. Thread Migration Q 39
nn The result: Dynamic change of parallelism

ä DMI expanded and shrinked the computational scale dynamically
in response to the change of available resources

ä No address collision happened
ä Migration time:

Ô 17 sec for adding 8 nodes, migrating 120 threads (57GB memory)
Ô 30 sec for removing 12 nodes, migrating 120 threads (57GB memory)

eee

e

ee
e

e

e
e

e
e
e

e

ee

v 5. Conclusions

5. Conclusions Q 41
nn A summary

ä DMI(Distributed Memory Interface): A PGAS framework for a par-
allel computation on a cloud
Ô A programmer only has to create a sufficient number of threads
Ô A framework schedules these threads dynamically on available

resources
Ô A high-performance global address space (GAS) is provided for a

data sharing layer between the threads

5. Conclusions Q 42
nn Future work

ä Evaluate and optimize real-world scientific computings on the real-
world cloud
Ô FEMs, particle methods
Ô Amazon EC2 Spot

ä Improve a distributed thread scheduler
Ô Consider the cost of thread migration and data locality
Ô Reduce the overhead of running multiple threads on one node

ä Support fault tolerance
Ô Distributed checkpointing & restart

5. Conclusions Q 43
nn Publications

ä A Global Address Space Framework for Irregular Applications (ac-
cepted, short paper). High Performance Distributed Computing.
2010/6

ä 原健太朗，田浦健次朗，近山隆．DMI：計算資源の動的な参加/脱退をサ
ポートする大規模分散共有メモリインタフェース．情報処理学会論文誌
（プログラミング）．Vol.3，No.1，pp.1-40．2010/3

ä 原健太朗．有限要素法における連立方程式ソルバの並列化（第 2回クラス
タシステム上の並列プログラミングコンテスト成果報告）．第 9 回 PC ク
ラスタシンポジウム．2009/12

ä 原健太朗，田浦健次朗，近山隆．DMI：計算資源の動的な参加/脱退をサ
ポートする大規模分散共有メモリインタフェース．SWoPP2009．2009/8

