< A PGAS Framework Supporting a
Parallel Computation Expanding and
Shrinking its Scale Dynamically <

Taura Lab, M2, Kentaro Hara

2010.4.30

J\ 1. Introduction *3
Backgrounds and a goal

» Backgrounds: Large-scale parallel scientific computings
-> Stress analyses
=> Fluid analyses
=> Earthquake simulations

» Goal: Develop a framework which supports these large-scale paral-
lel scientific computings on a cloud

1. Introduction *k4

What is a cloud?

» Mechanism:

=> A provider manages a data center and provides its resources as a
service

=> A user can use as many resources as needed in a pay-as-you-go sys-
tem

» Model: Multiple resources are used by multiple users

CIOE\IU;JIEi)rovider

% Z
Node] - (oge
MRSy
Node ~

Use as you like "as a service”

J\ 1. Introduction . 39
An example of the cloud(1)

» When the load of a user A increases, the computational scale of the
user A expands

Node

J\ 1. Introduction *6
An example of the cloud(2)

» Later, when the load of a user B increases, the computational scale of
the user B expands instead of shrinking the scale of the user A

Node

-/

O G D é’j’
O 'Q B 14
7,(.‘ o@ 7o &=

Load

1. Introduction > 4

The essence of the cloud

» Multiple resources are used by multiple users

» Hence available resources for each user change dynamically in re-
sponse to the overall load

Available nodes An available node Available nodes

J\ 1. Introduction * 8
Then, how should a parallel computation run on the cloud?

» Targeted apps: Long-running large-scale parallel scientific comput-
INgs
-> Finite element methods (FEM)
=> Particle methods

» These apps should run expanding and shrinking their scale dynami-

cally in response to the available resources at the time[Chaudhart et
al,2006]

=> “But... too difficult to develop such an elastic parallel program!!!”

Available nodes An available node Available nodes

J\ 1. Introduction *0Q
A required programming model

(1) A programmer only has to describe the parallelism of an app

(2) Then, a framework expands and shrinks the computational scale
automatically and dynamically

Programmer :

Parallel app (ex. 16 parallelism)

(®

Available nodes An available node Available nodes

J\ 1. Introduction * 10
My proposal: DMI(Distributed Memory Interface)

(1) A programmer only has to create a sufficient number of threads

(2) A framework schedules these threads dynamically on available re-
sources

(3) A high-performance global address space (GAS) is provided for a
data sharing layer between the threads

Programmer :

DMI :
|
00 _—
o) (20
0
-/ (B

Available nodes An available node Available nodes

J\ 1. Introduction k11
Programming interfaces of DMI

» Similar to a (normal) shared memory environment
= Mmap/Munmap on the GAS
> Read /Write from/to the GAS
=> Synchronization
- Create/Join/Detach threads
- ... (73 APIs in total)

» A shared library for C
g Nodel \ [Node2 ¢ Node n
Thread|[Thread Thread||Thread Thread|[Thread
Tapi || Papi Tapr|| Jap Tapr|| Jap
\% \% \% v o \% \%
GAS(=virtual shared memory)

. /L J (N J

J\ 1. Introduction * 12
Primary elemental techniques of DMI

» Designing the GAS

> How can the performance of the GAS be improved?

> How can the GAS support dynamic joining/leaving of nodes?
» Thread migration

-> How can a live thread migrate safely?

@%ﬁﬁ@%

% 2. Related Work

ity

J\ 2. Related Work * 14
Google App Engine (GAE)

» A user can run Web apps on the Google’s efficient infrastructure

» GAE scales up/down the apps automatically and rapidly in response
to the increase/decrease of web requests

» Demerit : Each request must be processed within 30 seconds

=> Almost impossible to run long-running large-scale parallel scientific
computings

Node

20 0
B

Web request

2. Related Work *15

GAE vs DMI

» Requirement: Schedule resources rapidly between users
» How do GAE and DMI fulfill the requirement?
=> GAE can schedule resources only by web request
¢ Hence each request must be processed in a short time
¢ Short-running web apps
=> DMI can schedule resources (almost) anytime by migrating threads
¢ Hence each thread can run a long time
¢ Long-running large-scale parallel scientific computings!

3. Designing a GAS k17

What is a GAS?

» A thread can access data on physically distributed memories by read-
ing /writing from/to the globally unique address of the data

Read data from Write data to

the address Ox2000 the address 0x3000
4 Node1 4 Node2 (Noden

Thread||Thread Thread||Thread Thread||Thread
™ N\
GAS . N\
Data

A\ A /U J | J

0x1000 0x4000

3. Designing a GAS

k18

|

A naive implementation of the GAS

» Divide data into pages of suitable size (PGAS)
» Determine one fixed owner for each page

-> The owner always manages the latest page and its coherency

Read fault

(1)Read (any part of) pagel

Thread

Node1
Thread

Node2
Thread

W [%hread

Write fault

(1)Write (any part of) pagel

Thread

Node2

Node1
Thread

Thread

W [%hread

|

[GAS Page
T

Page2

Page3

Paged]

[GAS |_Page’|
<

Page2

Page3

Paged

J

J

Page1

(3)Send (any part of) pagel

J
(2)Request

J

_“\\

Data for write

(3)Update pagel

7

3. Designing a GAS

19

Discussioni: Should an owner be fixed?

» If the computational scale changes, the atfinity of each thread for

pages also changes

=> An owner should migrate dynamically according to access patterns

-> Tradeoff: But too much owner migration increases the overhead of
tracing the location of the owner

» Point: Whether the owner should be fixed or not depends on the ac-
cess characteristics of the page

)

Node1 Node?2
(Thread’l Thread2 Thrgad3W(Thread4 Threadb Thre\ad%
[GAS Page1 Page2 Page3 Page4 Page5 Pageb]
Add node3) o }
but do not Node1 Node2 Node3
change (Thread1 Thread?2 Jﬁgeaﬁ Thread4 Thread5 Th)rgad6w
owners il A e
[GAS | Page1 Page2 || Page3 Page4 || Page5 || Page6
Add node3 and < < S >
change owners Node' Node2 Node3
according to (Thread’l Thrg\adszhread?) Thread4 (ThreadS Thre\ad%
access patterns T T T T T T
[GAS Page1 Page2 Page3 Page4 Page5 Page6 J

N

-

N

-

N

-

J\ 3. Designing a GAS * 20
Discussion2: Should a page be cached?

» It is inefficient to communicate with an owner at every read fault
-> A page should be cached

=> Tradeoff: But caching increases the overhead of coherency manage-
ment

» Point: Whether the page should be cached or not depends on the ac-
cess characteristics of the page

(1)Read (any part of) pagel

4 Node1 N (Node?2 h
Thread| [Thread Thread| |Thread

[GAS Page1| |Page2 Page3| |Page4 J
T T 7
\Z)Request/'
Page”

(3)Send (any part of) pagel

J\ 3. Designing a GAS k21
A summary and my proposal

» Summary:

-> It is important to allow a programmer to specify the access charac-
teristics of each page explicitly

» My proposal: Selective cache read/write

> A programmer can explicitly select the behavior of a page fault at
every read/write

¢ Whether an owner should be fixed or not
¢ Whether a page should be cached or not
e No cache, an invalidate cache, an update cache

DMI_read(gas_addr, size, buffer, SELECT);
DMI_write(gas_addr, size, buffer, SELECT);

J\ 3. Designing a GAS k22
Other optimization methods

» Productive APIs for communicating the values of boundary points in
parallel scientific computings with domain decompositions

» Automatic load balancing of data transfers
» Aggregation of discrete accesses

» Asynchronous read /write

» User-defined page size

» User-defined read-modify-write

[Nakajima,2009]

J\ 3. Designing a GAS * 23
Joining of a node to the GAS

i h
GAS | Node2 | (2)Acquire a global lock
[Node’l] N0d93]
\ // (3)Send meta data
- for all nodes

(6)Join and all pages
notification

Joining o
Node (1)Want to join

(4)Invalidate all pages
(5)Predict owners for all pages
(7)Release the global lock

J\ 3. Designing a GAS k24
Leaving of a node from the GAS

(4)Re-predict owners for
the pages of which the
node thinks the owner

Is the leaving node

e N
GAS
' Node?2 ' (6)Release the gIobaI lock

(3)Leave
notification

:

Leaving
Node

(5)Want to leave
J/

(1)Acquire a global lock
(2)Evict all pages

» DMI defines protocols for consistency maintenance strictly

%k 25

An experiment: An FEM

J\ 3. Designing a GAS

» A stress analysis using an FEM

=> A hard-to-converge problem based on the real-world engineering

=> The problem used in the programming contest on supercomputers

» Environment: 8 cores x 16 nodes, 1GbitE

€§>Distortion

7 Uniformed Distributed Force
i in z-direction@z=p

L3

90 elements
U,=0@y=0
90 elements
P
U,=0@z=0
X

Uy=0@x=0

90 ele

ments

Hy

U=(U,,U,,U,) : Displacement Vector [Nakajima,2009]

J\ 3. Designing a GAS * 26
The result: The scalability of the FEM

» Speedup = (the execution time when executed using 1 processor) /
(the execution time when executed using n processors)

40 T T T T T T
mpich?2 — e — 1 1 1
35 | OpenMP] w7 |
S B0 [T :
+ | | | | | |
<
¢ 25 e . o o :
g 0F i s -
o b A P 0 o :
) | | 3 | | |
k5
s 10 g T A T T l
Q, | | | | | |
7 | ‘ ‘ ‘ ‘ ‘
5F & i
0 ; ; ; ;

0 20 40 60 30 100 120 140

I of processors

J\ 3. Designing a GAS k27
The result: The scalability of other apps

» Matrix multiplication
» Integer sorting

Matrix multiplication Integer sorting
20

90 T T T T T T T T T T
30 L mpich?2 —e&— . mpich?2 —e
‘ OpenMP1

| OpenMP] [T | | |

speedup
speedup

0 20 40 60 &0 100 120 140 0 20 40 60 &0 100 120 140

of processors # of processors

k 29

J\ 4. Thread Migration
Assumptions: Threads of DMI

» Each process has multiple threads

» Memory of a thread = Register + Stack + Heap

» Bach thread just accesses the memory of the thread

-> Data sharing between threads is achieved through a GAS

-> No file I/O, no network I/O

Memory(=register+stack+heap)

-
-
-
-

g
-
-
-
-

-
-
-
-
-

f NodeT. .77 Node2) C Noden
Thread||Thread Thread||Thread Thread||Thread
A
APl Tap M|l Tap Tapr|| Tap
v v \ v v v
GAS
g T C Y T Y

J\ 4. Thread Migration * 30
Thread migration in DMI

» Thread migration:
-> Stop a thread on the source node
=> Migrate the memory of the thread
-> Resume the thread on the destination node

» To avoid pointer invalidation, the memory of the thread must be al-
located on the same address|[Antoniu et al,1999]

=> But there is no guarantee that the appropriate addresses are not used
at the destination node

(Source node " Destination node
" Process ' ‘
Thread1 Thread2
Memory | Memory
L Ad dress space— /. 71\ _______ Address space—_ 3

/
\At the same address

J\ 4. Thread Migration k31
How can memory be allocated on the same address?

» An existing approach[Weissman et al,1998]:

- Divide the whole address space (ex.2°?) and fix statically the ad-
dresses that each thread can use

=> Guarantee the global uniqueness of the addresses used by each
thread

» “This is impractical in a 32bit arch, but is practical in a 64bit
arch”[Itzkovitz et al, 1998][Weissman et al, 1998][Thitikamol et al,1999]

@ 1iThread 2iThread 3i sss s ETh;dnJ

Address space (232)

J\ 4. Thread Migration * 32
Is it really practical in a 64bit arch?

» The size of the address space of most 64bit arches is 247

The number The memory size that
of threads each thread can use

2*bytes =/8192\x/64GB

2*bytes =\1024/x\512GB

» “The limit is approaching!”
=> Thread migration unrestricted by the size of the address space is
required

%k 33

My proposal: Random-address(1)

J\ 4. Thread Migration

(1) Determine the addresses used by each thread randomly

(2) If we are lucky, addresses do not collide when a thread migrates

" Source node

. Process

Thread’

Pie P
- -
- -
s ® -
- -
- -

" Destination node
Thread2 |

Memory | |

s space—_

(1)Aflocate randomly

(3)Success!!!

J\ 4. Thread Migration * 34
My proposal: Random-address(2)

(3) If we are not lucky, addresses collide
(a) Then, create a new process (=a new address space) on the destina-
tion node
(b) Migrate the thread into the new process
» Note: This approach cannot be achieved without the GAS supporting
dynamic joining of nodes

(Sourcenode | [Destination node
" Process ‘ " Process ‘
: Thread1 Thread?2
|Memory Memory | | :
""""""""""""""""""""""""" | (2)Cannot allocate on
; / 5 | the same address
o Address space — . " — Address space — . "
(1)Allocate randomly Nacess T | (3)Create a new
Thread || process
Memory :
' Address space A
7T e R e Y,

J\ 4. Thread Migration %k 35
How to minimize the probability of the address collision

» One of the optimized solutions: “Use addresses as continuous as pos-

sible”
" Node) (Node A
“Process " Process :
. |Thread1 Thread?2 : .| Thread1 Thread?2 :
] Memory ’ ’ Memory §
i 5 E ~—__ 5
e pAddress space——" i) Adgfessspac _________________ 3

| |
(1)Allocate on a random address (3)If the address collides\
(4)Allocate on a random address

\ [
" Node Node A
‘ Process ‘g ‘' Process
. | Thread1 Thread? : .| Thread1 Thread?2
Memory : ; Memory :
e N— [=]
. ————Address space——) \l_——-Address space— Y

(2)Allocate continuously (5)Allocate continuously

J\ 4. Thread Migration * 36
An experiment: An FEM(1)

» A stress analysis using an FEM
» Environment: 8 cores x 16 nodes, 10GbitE

€§>Distortion

7 Uniformed Distributed Force
i in z-direction@z=p

L3

150 elementp U,=0@x=0
Uy:O@y:O
150 elg t
150 elementp = pm%y
P
U,=0@z=0
X

U=(U,,U,,U,) : Displacement Vector [Nakajima,2009]

J\ 4. Thread Migration * 37
An experiment: An FEM(2)

» Repeat until convergence

» Only insert a chance of cooperative thread migration at the head of
each iteration

solve A7 = b :
K p_)econdltmned matrix of A
ro=b — A%

— ok = — — —>
initialize vectors x¢, g, Ty, PO, U0, Yo, Vo properly

initialize 8_1, &0, no properly
for n=20,1,2,... until convergence do

DMI vyield()
ﬁ — K_lﬁ,) ‘|‘ 6n—1(pn—1 — un—l)
Aﬁ :«’_é)K_) ﬂil‘ﬁﬂ_—)l(Apn—l — A'Ufn—l)
an = (TO,Tn)/(TO,APn) . .
En = ((Yn, Yn)(Vn,Tn) — (yﬁvrn)(vnvyn))/((vnavn)(yn\a'yn) — (ynavn\)(vﬂjayﬁ))
Nn = ((Unavn>(yn>rn) (yn,vn)(vn,rn))/((vn,vrg)(yﬁ,yn) — (Yn, Vn)(Vn, Yn))
—'rL> = K (gnApn + nnyn) + nnﬁn lun—l
—1—> —_—
Zn =& K Try nnzn—l — anun
yn—l—l = SnAK_lrn + nnyn anAun
Tnt+l = Tn + anm + Z_TZ
'm+1 = Tn — anApn - yn—l—l

Bn == (an/gn)(roarn—l—l/(’ro’rn))

endfor

o

4. Thread Migration

%k 38

An experiment: An experimental scenario

» Create 128 threads
=> Each thread consumes 500MB memory (64GB in total)
- A GAS consumes 335MB memory

» Change available resources:

(1) Run on the nodes 1~8
(2) Add the nodes 9~16
(3) Remove the nodes 1~12

Thread GAS b 4 GAS R

\) RY2R Y YShYZ2

x16 DX’I [Ix16| []x16 [(Ix8 | | [Ix8| | [Ix8 | [[]x8

L ___J L\

N\ [RY2R Y Y2hYZ2

[Ix16| [[1x1 []x’l6 []x16 [Ix8 || [Ix8] | [Ix8 | | []x8

VAN AN N J\

""""""" TN T Expand! T) ())

b = P § [Ix8 | | [Ix8| | [[Ix8 | | [Ix8
__ ! ___J L

""""""""""""""""""""""" Yo YanYa

CIx8 | | [Ix8| | [x8 | | [Ix8

__ A A L)

"Computation migration"

......................................

..

............................
¢¢¢¢¢¢¢¢¢¢¢¢

.......................................

......................................

......................................

EE=

GAS

J\ 4. Thread Migration * 39
The result: Dynamic change of parallelism

5.0 . . .
4 nodes

4.57 (32 cores)
4.0t o o ,

O 3.5} '-' od

:' 3.0t n’.“..

-E 2.5} ‘1’ * '8

S 5.8 nodes

= (64 cores

2 1.5%&) 16 nodes

v 10 (128 cores)

W T L
0.5t

0 20 40 60 80 100 120 140 160 180
[terations

» DMI expanded and shrinked the computational scale dynamically
in response to the change of available resources

» No address collision happened
» Migration time:
-> 17 sec for adding 8 nodes, migrating 120 threads (57GB memory)
=> 30 sec for removing 12 nodes, migrating 120 threads (57GB memory)

J\ 9. Conclusions k4]
A summary

» DMI(Distributed Memory Interface): A PGAS framework for a par-
allel computation on a cloud

-> A programmer only has to create a sufficient number of threads

> A framework schedules these threads dynamically on available
resources

-> A high-performance global address space (GAS) is provided for a
data sharing layer between the threads

Programmer : — Global Address Space(GAS)
. o0 0, o Do
O~ o0 _ Thread
DMI . = 00—
: 1 hour 2 hours
......... ,\ ater later
b e \ D N e Him
OO
0 @ag rin k(1 () - d! /@c
0 = il Xpapa: 00/ (@0
= o) -« - 77 i i) 77
[l 4
= GAS '/ A i v

Avaitlable nodec An availahle node Aairlable nodec

J\ 9. Conclusions * 42
Future work

» Evaluate and optimize real-world scientific computings on the real-
world cloud

=> FEMs, particle methods

= Amazon EC2 Spot
» Improve a distributed thread scheduler

=> Consider the cost of thread migration and data locality

-> Reduce the overhead of running multiple threads on one node
» Support fault tolerance

=> Distributed checkpointing & restart

5. Conclusions *43

Publications

» A Global Address Space Framework for Irregular Applications (ac-
cepted, short paper). High Performance Distributed Computing.

2010/6
>» 000000000000000DMIODO0O0000O00/0000
I0000000000000000000000000000000
00000000 M Vol.30 No.10 pp.1-400 2010/3

> 0000000000 ooooooon 20000
O0000o0ooOoooooooooooooooooomao 90 PCO
OO000o0D0OO000o2009/12

> 0000000000000 0ODODMIOOOODOOOOOOO/OO00
0000000000000 0D0D0O000DDOO0SWoPP200902009/8

