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Backgrounds and a goal

» Backgrounds: Large-scale parallel scientific computings
-> Stress analyses
=> Fluid analyses
=> Earthquake simulations

» Goal: Develop a framework which supports these large-scale paral-
lel scientific computings on a cloud
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What is a cloud?

» Mechanism:

=> A provider manages a data center and provides its resources as a
service

=> A user can use as many resources as needed in a pay-as-you-go sys-
tem

» Model: Multiple resources are used by multiple users
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An example of the cloud(1)

» When the load of a user A increases, the computational scale of the
user A expands

Node
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An example of the cloud(2)

» Later, when the load of a user B increases, the computational scale of
the user B expands instead of shrinking the scale of the user A
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The essence of the cloud

» Multiple resources are used by multiple users

» Hence available resources for each user change dynamically in re-
sponse to the overall load

Available nodes An available node Available nodes
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Then, how should a parallel computation run on the cloud?

» Targeted apps: Long-running large-scale parallel scientific comput-
INgs
-> Finite element methods (FEM)
=> Particle methods

» These apps should run expanding and shrinking their scale dynami-

cally in response to the available resources at the time[Chaudhart et
al,2006]

=> “But... too difficult to develop such an elastic parallel program!!!”

Available nodes An available node Available nodes
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A required programming model

(1) A programmer only has to describe the parallelism of an app

(2) Then, a framework expands and shrinks the computational scale
automatically and dynamically

Programmer :

Parallel app (ex. 16 parallelism)

(®

Available nodes An available node Available nodes
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My proposal: DMI(Distributed Memory Interface)

(1) A programmer only has to create a sufficient number of threads

(2) A framework schedules these threads dynamically on available re-
sources

(3) A high-performance global address space (GAS) is provided for a
data sharing layer between the threads

Programmer :

DMI :
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Programming interfaces of DMI

» Similar to a (normal) shared memory environment
= Mmap/Munmap on the GAS
> Read /Write from/to the GAS
=> Synchronization
- Create/Join/Detach threads
- ... (73 APIs in total)

» A shared library for C
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Primary elemental techniques of DMI

» Designing the GAS

> How can the performance of the GAS be improved?

> How can the GAS support dynamic joining/leaving of nodes?
» Thread migration

-> How can a live thread migrate safely?
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Google App Engine (GAE)

» A user can run Web apps on the Google’s efficient infrastructure

» GAE scales up/down the apps automatically and rapidly in response
to the increase/decrease of web requests

» Demerit : Each request must be processed within 30 seconds

=> Almost impossible to run long-running large-scale parallel scientific
computings

Node
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GAE vs DMI

» Requirement: Schedule resources rapidly between users
» How do GAE and DMI fulfill the requirement?
=> GAE can schedule resources only by web request
¢ Hence each request must be processed in a short time
¢ Short-running web apps
=> DMI can schedule resources (almost) anytime by migrating threads
¢ Hence each thread can run a long time
¢ Long-running large-scale parallel scientific computings!
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What is a GAS?

» A thread can access data on physically distributed memories by read-
ing /writing from/to the globally unique address of the data

Read data from Write data to

the address Ox2000 the address 0x3000
4 Node1 4 Node2 ( Noden
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|

A naive implementation of the GAS

» Divide data into pages of suitable size (PGAS)
» Determine one fixed owner for each page

-> The owner always manages the latest page and its coherency

Read fault

(1)Read (any part of) pagel
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Write fault

(1)Write (any part of) pagel
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Discussioni: Should an owner be fixed?

» If the computational scale changes, the atfinity of each thread for

pages also changes

=> An owner should migrate dynamically according to access patterns

-> Tradeoff: But too much owner migration increases the overhead of
tracing the location of the owner

» Point: Whether the owner should be fixed or not depends on the ac-
cess characteristics of the page

)
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Discussion2: Should a page be cached?

» It is inefficient to communicate with an owner at every read fault
-> A page should be cached

=> Tradeoff: But caching increases the overhead of coherency manage-
ment

» Point: Whether the page should be cached or not depends on the ac-
cess characteristics of the page

(1)Read (any part of) pagel
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A summary and my proposal

» Summary:

-> It is important to allow a programmer to specify the access charac-
teristics of each page explicitly

» My proposal: Selective cache read/write

> A programmer can explicitly select the behavior of a page fault at
every read/write

¢ Whether an owner should be fixed or not
¢ Whether a page should be cached or not
e No cache, an invalidate cache, an update cache

DMI_read(gas_addr, size, buffer, SELECT);
DMI_write(gas_addr, size, buffer, SELECT);
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Other optimization methods

» Productive APIs for communicating the values of boundary points in
parallel scientific computings with domain decompositions

» Automatic load balancing of data transfers
» Aggregation of discrete accesses

» Asynchronous read /write

» User-defined page size

» User-defined read-modify-write

[Nakajima,2009]
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Joining of a node to the GAS

i h
GAS | Node2 | (2)Acquire a global lock
[Node’l] N0d93]
\ // (3)Send meta data
- for all nodes

(6)Join and all pages
notification

Joining o
Node (1)Want to join

(4)Invalidate all pages
(5)Predict owners for all pages
(7)Release the global lock
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Leaving of a node from the GAS

(4)Re-predict owners for
the pages of which the
node thinks the owner

Is the leaving node

e N
GAS
' Node?2 ' (6)Release the gIobaI lock

(3)Leave
notification

:

Leaving
Node

(5)Want to leave
J/

(1)Acquire a global lock
(2)Evict all pages

» DMI defines protocols for consistency maintenance strictly
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An experiment: An FEM

J\ 3. Designing a GAS

» A stress analysis using an FEM

=> A hard-to-converge problem based on the real-world engineering

=> The problem used in the programming contest on supercomputers

» Environment: 8 cores x 16 nodes, 1GbitE

€§>Distortion

7 Uniformed Distributed Force
i in z-direction@z=p

L3

90 elements
U,=0@y=0
90 elements
P
U,=0@z=0
X

Uy=0@x=0

90 ele

ments

Hy

U=(U,,U,,U,) : Displacement Vector [Nakajima,2009]
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The result: The scalability of the FEM

» Speedup = (the execution time when executed using 1 processor) /
(the execution time when executed using n processors)
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The result: The scalability of other apps

» Matrix multiplication
» Integer sorting

Matrix multiplication Integer sorting
20

90 T T T T T T T T T T
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‘ OpenMP1
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speedup
speedup
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J\ 4. Thread Migration
Assumptions: Threads of DMI

» Each process has multiple threads

» Memory of a thread = Register + Stack + Heap

» Bach thread just accesses the memory of the thread

-> Data sharing between threads is achieved through a GAS

-> No file I/O, no network I/O

Memory(=register+stack+heap)
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Thread migration in DMI

» Thread migration:
-> Stop a thread on the source node
=> Migrate the memory of the thread
-> Resume the thread on the destination node

» To avoid pointer invalidation, the memory of the thread must be al-
located on the same address|[Antoniu et al,1999]

=> But there is no guarantee that the appropriate addresses are not used
at the destination node

( Source node " Destination node
" Process ' ‘
Thread1 Thread2
Memory | Memory
L Ad dress space— /. 71\ _______ Address space—_ 3

/
\At the same address
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How can memory be allocated on the same address?

» An existing approach[Weissman et al,1998]:

- Divide the whole address space (ex.2°?) and fix statically the ad-
dresses that each thread can use

=> Guarantee the global uniqueness of the addresses used by each
thread

» “This is impractical in a 32bit arch, but is practical in a 64bit
arch”[Itzkovitz et al, 1998][Weissman et al, 1998 ][ Thitikamol et al,1999]

@ 1iThread 2iThread 3i sss s ETh;dnJ

Address space (232)
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Is it really practical in a 64bit arch?

» The size of the address space of most 64bit arches is 247

The number The memory size that
of threads each thread can use

2*bytes =/8192\x/64GB

2*bytes =\1024/x\512GB

» “The limit is approaching!”
=> Thread migration unrestricted by the size of the address space is
required
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My proposal: Random-address(1)

J\ 4. Thread Migration

(1) Determine the addresses used by each thread randomly

(2) If we are lucky, addresses do not collide when a thread migrates

" Source node

---------------------------------------

. Process

Thread’

Pie P
- -
- -
s ® -
- -
- -

" Destination node
Thread2 |

Memory | |

s space—_

(1 )Aflocate randomly

(3)Success!!!
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My proposal: Random-address(2)

(3) If we are not lucky, addresses collide
(a) Then, create a new process (=a new address space) on the destina-
tion node
(b) Migrate the thread into the new process
» Note: This approach cannot be achieved without the GAS supporting
dynamic joining of nodes

(Sourcenode | [ Destination node
" Process ‘ " Process ‘
: Thread1 Thread?2
|Memory Memory | | :
""""""""""""""""""""""""" | (2)Cannot allocate on
; / 5 | the same address
o Address space — . " — Address space — . "
(1)Allocate randomly Nacess T | (3)Create a new
Thread || process
Memory :
' Address space A
7T e R e Y,
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How to minimize the probability of the address collision

» One of the optimized solutions: “Use addresses as continuous as pos-

sible”
" Node ) (Node A
“Process " Process :
. |Thread1 Thread?2 : .| Thread1 Thread?2 :
] Memory ’ ’ Memory §
i 5 E ~—__ 5
e pAddress space——" i) Adgfessspac _________________ 3

| |
(1)Allocate on a random address (3)If the address collides\
(4)Allocate on a random address

\ [
" Node Node A
‘ Process ‘g ‘' Process
. | Thread1 Thread? : .| Thread1 Thread?2
Memory : ; Memory :
e N— [ =]
. ————Address space—— ) \l_——-Address space— Y

(2)Allocate continuously (5)Allocate continuously
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An experiment: An FEM(1)

» A stress analysis using an FEM
» Environment: 8 cores x 16 nodes, 10GbitE

€§>Distortion

7 Uniformed Distributed Force
i in z-direction@z=p

L3

150 elementp U,=0@x=0
Uy:O@y:O
150 elg t
150 elementp = pm%y
P
U,=0@z=0
X

U=(U,,U,,U,) : Displacement Vector [Nakajima,2009]
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An experiment: An FEM(2)

» Repeat until convergence

» Only insert a chance of cooperative thread migration at the head of
each iteration

solve A7 = b :
K p_)econdltmned matrix of A
ro=b — A%

— ok = — — —>
initialize vectors x¢, g, Ty, PO, U0, Yo, Vo properly

initialize 8_1, &0, no properly
for n=20,1,2,... until convergence do

DMI vyield()
ﬁ — K_lﬁ,) ‘|‘ 6n—1(pn—1 — un—l)
Aﬁ :«’_é)K_) ﬂil‘ﬁﬂ_—)l(Apn—l — A'Ufn—l)
an = (TO,Tn)/(TO,APn) . .
En = ((Yn, Yn)(Vn,Tn) — (yﬁvrn)(vnvyn))/((vnavn)(yn\a'yn) — (ynavn\)(vﬂjayﬁ))
Nn = ((Unavn>(yn>rn) (yn,vn)(vn,rn))/((vn,vrg)(yﬁ,yn) — (Yn, Vn)(Vn, Yn))
—'rL> = K (gnApn + nnyn) + nnﬁn lun—l
—1—> —_—
Zn =& K Try nnzn—l — anun
yn—l—l = SnAK_lrn + nnyn anAun
Tnt+l = Tn + anm + Z_TZ
'm+1 = Tn — anApn - yn—l—l

Bn == (an/gn)(roarn—l—l/(’ro’rn))

endfor
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An experiment: An experimental scenario

» Create 128 threads
=> Each thread consumes 500MB memory (64GB in total)
- A GAS consumes 335MB memory

» Change available resources:

(1) Run on the nodes 1~8
(2) Add the nodes 9~16
(3) Remove the nodes 1~12

Thread GAS b 4 GAS R
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x16 DX’I [Ix16| []x16 [(Ix8 | | [Ix8| | [Ix8 | [ []x8

L \___J L\

N\ [ RY2R Y Y2hYZ2

[Ix16| [[1x1 []x’l6 []x16 [Ix8 || [Ix8] | [Ix8 | | []x8
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________________________________________ A A L)
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The result: Dynamic change of parallelism

5.0 . . .
4 nodes

4.57 (32 cores)
4.0t o o ,

O 3.5} '-' od
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-E 2.5} ‘1’ * '8

S 5.8 nodes

= (64 cores

2 1.5%&) 16 nodes

v 10 (128 cores)
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[terations

» DMI expanded and shrinked the computational scale dynamically
in response to the change of available resources

» No address collision happened
» Migration time:
-> 17 sec for adding 8 nodes, migrating 120 threads (57GB memory)
=> 30 sec for removing 12 nodes, migrating 120 threads (57GB memory)
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A summary

» DMI(Distributed Memory Interface): A PGAS framework for a par-
allel computation on a cloud

-> A programmer only has to create a sufficient number of threads

> A framework schedules these threads dynamically on available
resources

-> A high-performance global address space (GAS) is provided for a
data sharing layer between the threads

Programmer : — Global Address Space(GAS)
. o0 0, o Do
O~ o0 _ Thread
DMI . = 00—
: 1 hour 2 hours
......... ,\ ater later
b e \ D N e Him
OO
0 @ag rin k(1 () - d! /@c
0 = il Xpapa: 00/ (@0
= o) -« - 77 i i ) 77
[l 4
= GAS '/ A i v

Avaitlable nodec An availahle node Aairlable nodec
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Future work

» Evaluate and optimize real-world scientific computings on the real-
world cloud

=> FEMs, particle methods

= Amazon EC2 Spot
» Improve a distributed thread scheduler

=> Consider the cost of thread migration and data locality

-> Reduce the overhead of running multiple threads on one node
» Support fault tolerance

=> Distributed checkpointing & restart
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Publications

» A Global Address Space Framework for Irregular Applications (ac-
cepted, short paper). High Performance Distributed Computing.
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