
A Global Address Space Framework for Irregular ApplicationsA Global Address Space Framework for Irregular Applications
Kentaro Hara and Kenjiro Taura (The University of Tokyo)

v The Goal
ä Goal: “Make it easier to develop real-world scientific com-

putings with irregular domain decompositions”
ä Proposal: DMI (Distributed Memory Interface)

Ô A parallel and distributed programming framework based
on a global address space model

v What is DMI?

ä A multi-threaded global address space framework for HPC
applications
Ô A shared library for C

ä Basic APIs:
Ô addr = DMI_mmap(size, num)

© Allocate the global address space with num pages of (not
OS page size but arbitrary) size bytes in size

© Page-based consistency
Ô DMI_read(addr, size, buf) , DMI_write(addr, size, buf)

© Read/Write size bytes from/to the global address space
addr to/from a local memory buf

ä Other features (beyond this poster’s scope):
Ô Support for dynamic joining and leaving of nodes
Ô Live thread migration for automatic load balancing
Ô APIs for optimizing data locality explicitly

v What is the Problem?

ä Application: Real-world Finite Element Methods (FEM)
Ô An irregular domain decomposition and ordering
Ô Titanium[1], Global-Arrays[2] and XcalableMP support

only regular domain decompositions
ä Algorithm: Repeat iterations until convergence

(1) Obtain the values of ghost points
(2) Store the values of interior points and the ghost points in

a local buffer according to some suitable ordering
(3) Update the values of the interior points using a given con-

nectivity
ä Programming bottleneck: Exchanging the values of the

ghost points
Ô A programmer has to calculate the correspondence be-

tween global indexes and local indexes :
(1) the local indexes of the values that should be

sent/received to/from the neighboring processors
(2) the processors to/from which these values should be

sent/received
Ô Local-view programming is too complicated!!!

v An FEM program using DMI
ä Productive global-view programming

ä Internal implementations:
Ô Manage point values efficiently in a manner similar to

local-view programming by internally transforming the
global indexes specified by a programmer into the local
indexes

Ô Aggregate multiple internal communications for the same
processor into one message

v Performance Evaluation

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

sp
ee
du
p

processors

mpich2
OpenMPI

DMI

ä Environment: 8 cores×16 nodes, 10 Gbit Ethernet
ä Experiments:

Ô Stress analysis using an FEM
Ô A real-world and hard-to-converge problem
Ô DMI vs the champion MPI program of the parallel pro-

gramming contest
ä Results:

Ô DMI is easier to program than MPI
Ô Performance: mpich2≈DMI�OpenMPI

References
[1] Jimmy Su, Tong Wen, and Katherine Yelick. Compiler and Runtime Support for Scaling Adaptive Mesh Refinement

Computations in Titanium. Technical report, Electrical Engineering and Computer Sciences University of California at Berke-
ley, Jun 2006.

[2] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojkumar Krishnan, Harold Trease, and Edo Apra. Advances,

Applications and Performance of the Global Arrays Shared Memory Programming Toolkit. International Journal of High Per-

formance Computing Applications, Vol. 20, No. 2, pp. 203–231, 2006.

