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v The Goal
ä Goal: “Make it easier to develop real-world scientific com-

putings with irregular domain decompositions”
ä Proposal: DMI (Distributed Memory Interface)

Ô A parallel and distributed programming framework based
on a global address space model

v What is DMI?

ä A multi-threaded global address space framework for HPC
applications
Ô A shared library for C

ä Basic APIs:
Ô addr = DMI_mmap(size, num)

© Allocate the global address space with num pages of (not
OS page size but arbitrary ) size bytes in size

© Page-based consistency
Ô DMI_read(addr, size, buf) , DMI_write(addr, size, buf)

© Read/Write size bytes from/to the global address space
addr to/from a local memory buf

ä Other features (beyond this poster’s scope):
Ô Support for dynamic joining and leaving of nodes
Ô Live thread migration for automatic load balancing
Ô APIs for optimizing data locality explicitly

v What is the Problem?

ä Application: Real-world Finite Element Methods (FEM)
Ô An irregular domain decomposition and ordering
Ô Titanium[1], Global-Arrays[2] and XcalableMP support

only regular domain decompositions
ä Algorithm: Repeat iterations until convergence

(1) Obtain the values of ghost points
(2) Store the values of interior points and the ghost points in

a local buffer according to some suitable ordering
(3) Update the values of the interior points using a given con-

nectivity
ä Programming bottleneck: Exchanging the values of the

ghost points
Ô A programmer has to calculate the correspondence be-

tween global indexes and local indexes :
(1) the local indexes of the values that should be

sent/received to/from the neighboring processors
(2) the processors to/from which these values should be

sent/received
Ô Local-view programming is too complicated!!!

v An FEM program using DMI
ä Productive global-view programming

ä Internal implementations:
Ô Manage point values efficiently in a manner similar to

local-view programming by internally transforming the
global indexes specified by a programmer into the local
indexes

Ô Aggregate multiple internal communications for the same
processor into one message

v Performance Evaluation
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ä Environment: 8 cores×16 nodes, 10 Gbit Ethernet
ä Experiments:

Ô Stress analysis using an FEM
Ô A real-world and hard-to-converge problem
Ô DMI vs the champion MPI program of the parallel pro-

gramming contest
ä Results:

Ô DMI is easier to program than MPI
Ô Performance: mpich2≈DMI�OpenMPI
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