
Electronic Preprint for Journal of Information Processing Vol.20 No.1

Regular Paper

Parallel Computational Reconfiguration
Based on a PGAS Model

Kentaro Hara1,a) Kenjiro Taura1

Received: March 31, 2011, Accepted: September 12, 2011

Abstract: In order to improve the resource utilization of clusters and supercomputers and thus deliver application
results to users faster, it is essential for a job scheduler to expand and shrink parallel computations flexibly. In order to
enable the flexible job scheduling, the parallel computations have to be reconfigurable. With this motivation, this paper
proposes, implements and evaluates DMI, a global-view-based PGAS framework that enables easy programming of re-
configurable and high-performance parallel iterative computations. DMI provides programming interfaces with which
a programmer can program the reconfiguration easily with a global-view. Our performance evaluations showed that
DMI can efficiently adapt the parallelism of long-running parallel iterative computations, such as a real-world finite
element method and large-scale iterative graph search, to the dynamic increase and decrease of available resources
through the reconfiguration.

Keywords: partitioned global address space, finite element method, reconfiguration, scalability, productivity

1. Introduction

1.1 Backgrounds and Goals
In order to improve the resource utilization of clusters and su-

percomputers and thus deliver application results to users faster,
it is essential for a job scheduler to expand and shrink parallel
computations flexibly. And in order to enable the flexible job
scheduling, the parallel computations have to be reconfigurable.
To take an example, let us consider a job scheduling system
like TORQUE adopted in most supercomputing centers such as
T2K [1] and TSUBAME2 [3] in Japan. In such a torque-like job
scheduling system, a user can publish his parallel computation c1

as a job specifying the number of nodes that he wishes to use,
for example 1,000 nodes, and then the job scheduler dispatches
c1 when 1,000 nodes become available. Here note that even if
700 nodes are available at the time when c1 is published, c1 has
to wait to be dispatched until the 1,000 nodes become available.
Obviously, if the job scheduler can dispatch c1 to the 700 nodes
in the beginning and then expand c1 to the 1,000 nodes when the
1,000 nodes become available, the user will be able to get results
much faster. Furthermore, if another user publishes another com-
putation c2 which requires 800 nodes with higher priority than c1,
then it is preferable to dispatch c2 immediately to the 800 nodes
instead of shrinking the scale of c1 from the 1,000 nodes to the
remaining 200 nodes.

In this way, in order to improve the resource utilization and
thus deliver application results to users faster, it is essential for the
job scheduler to expand and shrink parallel computations flexi-
bly. Therefore, the parallel computation itself has to be described

1 School of Information Science and Technology, The University of
Tokyo, Bunkyo, Tokyo 113–8656, Japan

a) haraken@logos.ic.i.u-tokyo.ac.jp

so that it can expand and shrink its scale freely [7]. It is, how-
ever, obviously difficult to program such a reconfigurable parallel
computation. With this motivation, this paper proposes, imple-
ments and evaluates DMI (Distributed Memory Interface), which
is a global-view-based PGAS (Partitioned Global Address Space)
framework that enables easy programming of reconfigurable and
high-performance parallel iterative computations. These parallel
iterative computations include many important scientific applica-
tions such as a finite element method, a multigrid method, a par-
ticle method and iterative graph search, which have high require-
ment for the dynamic reconfiguration because these applications
are often long-running [19].

1.2 Contributions
The contributions of this paper are as follows:
• We point out that in order to support a reconfigurable parallel

computation without much performance degradation, a pro-
cessor virtualization model [14], [15] is inefficient and that
it is required to create or kill processes/threads dynamically
at every reconfiguration so that one process/thread is always
assigned to one core (Section 2).

• We point out that a global-view-based PGAS model is more
suitable than a message passing model for easily describing
this dynamic increase and decrease of threads (Section 2).

• The access locality of a reconfigurable computation dynam-
ically changes. Thus we propose selective cache read/write,
with which a programmer can easily adapt data distribution
to the actually observed access patterns in the reconfigurable
computation just by specifying the access locality of each
read/write (Section 3).

• We design and implement the programming interfaces that
enable easy programming of the parallel reconfigurable it-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

erative computations based on the global-view-based PGAS
model (Section 4).

• Our performance evaluations showed that DMI can effi-
ciently adapt the parallelism of long-running parallel it-
erative computations, such as a real-world finite element
method and large-scale iterative graph search, to the increase
and decrease of available resources through reconfiguration.
We also confirmed that DMI has higher programmability
than MPI for those irregular scientific applications thanks
to the global address space (Section 5).

To the best of our knowledge, this is the first work that achieves
the reconfiguration based on a PGAS model, although there have
been several works based on a message passing model such as
MPI [8], [19], [20], [26].

2. Programming Models Suitable for Recon-
figuration

2.1 Relationships between Processes and Processors
There are primarily two reconfiguration models depending on

whether multiple processes/threads are assigned to one core or
not. We refer to the former model as a processor virtualiza-
tion model [14], [15] and the latter model as a processor non-
virtualization model.

First, in a processor virtualization model, for example adopted
in Adaptive MPI [14], [15] and MPI checkpoint and restart [24],
a programmer just has to program his parallel computation with a
sufficient number of processes without considering the reconfigu-
ration. Then a framework transparently reconfigures the compu-
tation by mapping these many processes to physically available
resources through process migration dynamically. For example,
in case that he creates 10,000 processes, if 1,000 cores are avail-
able then the framework assigns 10 processes to one core, and
eventually if 100 cores become available then the framework as-
signs 100 processes to one core. The advantage of this model
is good programmability because of its transparentness. On the
other hand, the disadvantage is poor performance. In order to
run his computation efficiently on the unpredicted number of re-
sources, the programmer should create very many processes for
good load balancing. However, not only is how many processes
the programmer should initially create often unclear in a non-
artificial dynamic environment, but also creating too many pro-
cesses degrades performance dramatically [19]. The first reason
for this performance degradation is the overhead of a parallel al-
gorithm. In a parallel scientific computation with a domain de-
composition, for example, both computation and communication
increase as the degree of the decomposition increases and the
number of ghost elements [23], [29] increases. The second rea-
son is the overhead of assigning multiple processes to one core.
Figure 1 shows how performance degrades when n processes are
assigned to one core using NAS Parallel Benchmark [12]. Fig-
ure 1 indicates that the case of n = 8 is 8.5 times in MG and
167.7 times in IS slower than the case of n = 1. This degradation
is especially critical for parallel iterative computations since their
speed is determined by the slowest process at every synchroniza-
tion at every iteration. For example, the BiCGSafe method used
in the finite element method in Section 5.3 includes as much as

Fig. 1 Performance degradation when n processes are assigned to one core.
This experiment used 16 nodes (128 cores) shown in Section 5.1,
creating 128n processes in total. The execution time of IS at n = 8
is 167.7 (out of this graph). All execution times for each benchmark
are normalized so that the execution time at n = 1 becomes 1.

22 synchronizations per iteration. Note that the execution time
of each iteration is quite critical for the total execution time of
long-running iterative applications.

Second, in a processor non-virtualization model, for exam-
ple adopted in SRS [26], DyRecT [8], DRMS [17] and PCM [19],
[20], processes are created or killed at every reconfiguration so
that one process is always assigned to one core. The advantage
of this model is good performance. On the other hand, the dis-
advantage is poor programmability. In this model since a set
of processes changes at the reconfiguration, the data required
for continuing a subsequent computation has to be temporarily
checkpointed before the reconfiguration and then restored after
the reconfiguration among the set of new processes. Here it is a
programmer’s burden to program explicitly which data should be
checkpointed with what kind of data distribution and restored the
data with what kind of data distribution. Furthermore, it is non-
trivial what programming interfaces enable easy programming of
this dynamic process reconfiguration.

With these observations, DMI adopts the processor non-
virtualization model for performance reasons and then provides a
data communication model and programming interfaces that to-
gether enhance the poor programmability of the processor non-
virtualization model.

2.2 Data Communication Models
In the processor non-virtualization model a set of processes

changes dynamically at the reconfiguration. In this sub-section
we compare the programmability for this dynamic process re-
configuration between several representative data communication
models: a message passing model, a local-view-based PGAS
model [28], [29], a global-view-based PGAS model [16], [23] and
a DSM (Distributed Shared Memory) model [5], [18].

First, in the message passing model such as MPI and PVM,
a programmer explicitly describes send/receive operations using
ranks of processes. In other words, the programmer has to de-
scribe who sends what data and who receives what data by ex-
plicitly managing data locations (= who owns what data). It is,
however, difficult to program the dynamic process reconfigura-
tion in this model since the programmer has to explicitly manage
the complicated changes of the data locations at the reconfigura-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

tion. Specifically, the reconfiguration requires data re-distribution
in order to adapt the data distribution to the change of access lo-
cality and in order to hand over the data that a leaving process has
owned from the leaving process to another process. In essence,
this difficulty comes from the fact that in a local-view model like
the message passing model it is the programmer that has to man-
age the complicated data locations. In this sense, the local-view-
based PGAS model such as Co-array Fortran [28] also suffers the
same problem.

Second, in the global-view-based PGAS model such as
UPC [16], Global Arrays [23], X10 [4] and Chapel [6], the pro-
grammer can describe data communications as read/write oper-
ations from/to a global address space. This global-view-based
PGAS model is very suitable to program the dynamic process re-
configuration. This is because the programmer can describe the
data communications just by reading/writing from/to an intended
memory address, no matter what processes are involved in the
computation at the time. Assume, for example, a data x is located
at the memory address 0x12340000. Here the programmer can
obtain/store the data x anytime just by reading/writing from/to
0x12340000 without considering any reconfiguration since the
data x always exists at 0x12340000. Thus it is easy to program
the reconfigurable computation. In essence, this programming
ease comes from the fact that in a global-view model like the
global-view-based PGAS model it is not the programmer but a
framework that manages the complicated data locations. In this
sense, the DSM model such as TreadMarks [5] and CRL [18] also
eases the programming of the reconfigurable computations since
it also provides global-view *1. However, DMI adopts the global-
view-based PGAS model instead of the DSM model since the
PGAS model provides the programmer with more explicit ways
for controlling data distribution to optimize his program straight-
forwardly. Finally, note that regardless of the reconfiguration, the
global-view-based PGAS model delivers good programmability

based on read/write operations similar to multi-thread program-
ming on a physically shared memory environment [16], [23].

3. Design of a Global Address Space Frame-
work

As discussed in Section 2.2, the reason why a programmer
can easily program a reconfigurable parallel computation using
a global-view-based PGAS model is that a framework, instead of
the programmer, transparently manages the complicated change
of data locations over the reconfiguration and abstracts it as a
global address space. This section describes the design of the
global address space for a reconfigurable and high-performance

*1 Both global-view-based PGAS model and DSM model provide a global
address space, and there is no exact definition of these two models. In
this paper, a PGAS model refers to the programming model by which a
programmer can explicitly and strongly control data distribution and can
access remote data by get/put operations. In the PGAS model, the pro-
grammer needs to describe his program considering each data location
and how data is transferred between nodes. On the other hand, a DSM
model refers to the programming model by which the programmer can
transparently access the global address space by normal read/write mem-
ory operations without considering data location or even the difference
between remote data and local data. According to this definition and the
features of DMI that we mention in Section 3, this paper classifies DMI
not in a DSM model but in a global-view-based PGAS model.

Fig. 2 The system structure of DMI.

parallel computation.

3.1 System Overview
DMI is a multi-threaded global-view-based PGAS frame-

work [10], [11] (Fig. 2). In DMI, while one node can have mul-
tiple processes and one process can have multiple threads, we
assume below one process per node and one thread per core for
simplicity and performance.

First, DMI provides a global address space with cache coher-
ence. Each process provides some amount of memory called a
memory pool for DMI and then DMI constructs the global ad-
dress space over these distributed memory pools by implement-
ing memory management mechanisms such as page tables at user
level. Each thread can access all memory pools transparently
through reading/writing from/to the global address space. If the
accessed region of the global address space does not exist on the
memory pool of the process on which the thread runs, a page fault
occurs and the page is transferred from the process that owns the
page at the time. At this point, since DMI maintains the cache
coherence of the global address space, the process can cache the
transferred page in its memory pool if necessary, while existing
PGAS frameworks based on a put/get operation such as UPC,
Global Arrays, X10 and Chapel do not support cache coherence.
Second, since the memory pool is shared with multiple threads
on the same process, the data sharing between the threads on
the same process is realized efficiently through a physical shared
memory. In this way a programmer can enjoy hybrid program-
ming transparently without considering the distinction between
inter-node parallelism and intra-node parallelism. Third, DMI
behaves as a remote swap system by allocating huge global ad-
dress spaces across the memory pools on multiple nodes. When
the memory pool is saturated over repeated remote pagings, DMI
sweeps the memory pool on the basis of a page replacement algo-
rithm. Fourth, DMI maintains the cache coherence of the global
address space over the dynamic joining and leaving of processes.
While mechanisms and coherence protocols to achieve the dy-
namic joining and leaving of processes are never trivial, we leave
the details to another paper [11].

DMI has high portability since DMI is implemented as a static
library for C. DMI is implemented in approximately 27,000 lines
of C program. DMI provides 83 APIs to support and optimize a
broad range of high-performance parallel scientific applications,
for example APIs for a memory allocation/deallocation, a mem-
ory read/write, an asynchronous memory read/write, a mutual ex-
clusion, a collective synchronization, a user-defined read-modify-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

write, aggregating multiple discrete reads/writes, expressing ir-
regularly decomposed domains and so on [10], [11].

3.2 A Memory Consistency Model
DMI provides an intuitive memory consistency model,

but with which a programmer can explicitly and powerfully
optimize the performance of accessing the global address
space [11]. DMI separates between the global address space
and a local address space as shown in Fig. 2. The local
address space of each thread is a normal shared memory
allocated/deallocated by mmap()/munmap() and read/written
normally. On the other hand, the global address space is
allocated/deallocated by DMI mmap()/DMI munmap() and
read/written by DMI read()/DMI write().

The programmer can allocate the global address space with the
arbitrary coherence granularity suitable for his computation, as
with region-based DSMs [18]. We refer to the coherence gran-
ularity as a page. Specifically, by calling DMI mmap(int64 t
page size, int64 t page num) the programmer can allocate the
global address space with page num pages of page size bytes in
size. Thus the programmer can specify any block-cyclic data
distribution. For example, when the programmer computes a
matrix-matrix multiplication using some block partitioned algo-
rithm, the programmer can allocate the global address spaces with
page sizes that agree with the block size of each partitioned sub-
matrix. In this way the programmer can enlarge the unit size of
internal data transfers as much as necessary for his computation
by adjusting the coherence granularity explicitly. This reduces the
number of page faults dramatically and thus improves communi-
cation performance, compared to PGAS frameworks and DSM
frameworks that utilize the memory protection mechanism of an
operating system. Note that when the programmer cannot pre-
dict in advance how the number of processes will change with
dynamic reconfiguration, it is important to specify some fine co-
herence granularity in order to avoid false sharing.

The programmer can access the global address space
by calling DMI read(int64 t addr, int64 t size, void
*buf,...)/DMI write(int64 t addr, int64 t size, void *buf,...),
which reads/writes size bytes from/to the global address space
addr to/from a local address space buf. DMI guarantees the se-
quential consistency, an intuitive and easy-to-understand memory
consistency model, of DMI read() and DMI write(), the address
range [addr, addr+size) of which is within one page. When
the programmer calls DMI read()/DMI write() across multiple
pages, the semantics is such that DMI read()/DMI write()
is called separately and concurrently for the individual
pages. Thus since DMI does not guarantee the atomicity
of DMI read()/DMI write() across multiple pages, a mutual
exclusion is required if necessary. In addition, DMI provides
asynchronous DMI read()/DMI write(), with which the pro-
grammer can explicitly relax the (intuitive but sometimes too
strong) sequential consistency depending on the requirement of
his computation.

3.3 Access Locality Optimization Over Reconfiguration
In existing PGAS frameworks such as UPC, Global Arrays,

X10 and Chapel, data distribution on the global address space
is determined at data allocation and the data distribution can-
not be changed dynamically. However, when a set of processes
is reconfigured, the data that each process frequently accesses
changes. Thus it is significant to adapt the data distribution
to this dynamic change of access locality. The simplest ap-
proach for this dynamic data re-distribution is to have a program-
mer explicitly describe the data re-distribution at the reconfigu-
ration [8], [17], [19], [20], [26]. However, it is complicated to
describe the data re-distribution especially for data with irregular
structures. With this observation, we propose a selective cache

read/write *2, with which the programmer does not have to de-
scribe the complicated data re-distribution but just has to spec-
ify the access locality of each read/write. Here the access local-
ity of the read/write means how the data should be transferred
and cached in the memory pool of the process that issues the
read/write. With this selective cache read/write the programmer
can explicitly and flexibly optimize the data transfers, including
the data re-distribution at the reconfiguration, by controlling this
access locality of each read/write.

To understand this selective cache read/write a little knowledge
about the cache management of DMI is required. In DMI a pro-
cess can have a cache of a page in its memory pool. Each page
has one owner process that always has the cache of the page and
has the responsibility for maintaining the cache coherence of the
page, while this owner can migrate dynamically. Here a read
fault occurs when the process does not have the cache. A write
fault occurs when the process is not the owner or the process is
the owner but at least one other process has the cache (since the
cache coherence has to be maintained with the cache). Therefore
the objective of the selective cache read/write is to minimize the
performance degradation caused by these read/write faults by ex-
plicitly controlling the access locality of each read/write, that is,
by explicitly controlling how the accessed page should be trans-
ferred and cached when each read/write causes the read/write
fault. Specifically, the programmer can specify this access local-
ity as the argument mode of DMI read(int64 t addr, int64 t size,
void *buf, int mode)/DMI write(int64 t addr, int64 t size, void
*buf, int mode).

We assume below that a process i is going to read/write the
page whose owner is a process v. The possible read modes of
DMI read() are as follows (Fig. 3):

INVALIDATE mode: The page is transferred from the owner v
and then cached in the memory pool of the process i. This cache
is invalidated when the page is updated by some process next.

UPDATE mode: The page is transferred from the owner v and
then cached in the memory pool of the process i. This cache is
kept updated whenever the page is updated.

GET mode: Only the requested part of the page by this read is
transferred from the owner v but not cached.

Considering that the owner v has to maintain the cache coher-
ence by invalidating or updating all caches when the page is up-
dated by a write, a programmer should use (1) an INVALIDATE
mode if the page will be read in the near future and the perfor-

*2 We name it “selective” since a programmer can explicitly select cache
behaviors.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

Fig. 3 Selective read.

Fig. 4 Selective write.

mance of a write is more critical than that of a read; (2) an UP-
DATE mode if the page will be read in the near future and the
performance of a read is more critical than that of a write; (3) a
GET mode if the page will not be read in the near future or only
a small part of the page is read.

Next, the possible write modes of DMI write() are as follows
(Fig. 4):

EXCLUSIVE mode: After the process i steals the owner au-
thority from the owner v, the page is updated by the process i.
Thus the process i becomes a new owner.

PUT mode: The data to be written is sent to the owner v and the
page is updated by the owner v. Thus the owner does not change.

Obviously, the owner should not migrate unnecessarily by the
EXCLUSIVE mode because the owner migration can cause a
heavy page transfer and the overhead of DMI to locate the owner
increases as the owner migrates frequently. Thus the program-
mer should use (1) an EXCLUSIVE mode if only the process has
strong write locality for the page; (2) a PUT mode otherwise. In
particular, the EXCLUSIVE mode dynamically adapts data dis-
tribution to the actually observed access patterns and thus adapts
the data distribution to the change of access locality over recon-
figuration.

Thus, in DMI the data distribution is adapted to the actually
observed access patterns just by specifying the access locality of
each read/write. This is a productive way of optimizing the dy-
namically changeable access locality of reconfigurable computa-
tions. In addition, regardless of the reconfiguration, this selective
cache read/write is a powerful annotation for performance op-
timization in that the programmer can combine write-invalidate
cache, write-update cache and get/put operations very flexibly at
every read/write. In essence, the key for optimizing a DMI pro-
gram is to appropriately control the access granularity by the ar-

gument page size of DMI mmap() and the access locality by the
argument mode of each DMI read()/DMI write().

4. Reconfigurable Programming Interfaces

This section describes the design and implementation of the
programming interfaces primarily targeted for SPMD parallel it-
erative computations with reconfiguration.

4.1 Design
4.1.1 A Basic Idea

Generally, the control flow of the SPMD parallel iterative com-
putation with reconfiguration has the form of Fig. 5. Specifically,
(1) one thread executes an initialization phase; (2) a set of threads
executes the computation for a while; (3) eventually the set of
threads changes according to the change of a set of nodes, and the
set of new threads continues the computation for a while again;
(4) finally the computation completes and one thread executes a
finalization phase. Here we refer to the period during which the
set of threads does not change as a itergroup. The control flow
shown in Fig. 5 consists of three itergroups.

In order to express the control flow naturally and flexibly, pro-
gramming interfaces that meet the following properties are re-
quired:
• Each itergroup should be expressed as a normal SPMD pro-

gram.
• When to finish each itergroup should be programmable. In

other words, the condition that determines a reconfiguration
timing should be controlled flexibly on the basis of the re-
source information about joining nodes and leaving nodes.

• At the end of each itergroup, the data required for continu-
ing subsequent itergroups has to be checkpointed to a global
address space. At the start of the next itergroup, the data has

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

Fig. 5 The control flow of an SPMD parallel iterative computation with reconfiguration.

01: void DMI main(int argc, char **argv) {
02: struct data t data; /* the data to be checkpointed and restored */
03: int init node num = atoi(argv[1]); /* the initial number of nodes */
04: ...; /* an initialization phase of this application */
05: int64 t addr = DMI mmap(sizeof(data), 1); /* allocate a global address space */
06: data.iter = 0; /* a current iteration number */
07: DMI write(addr, sizeof(data), &data, PUT); /* write to the global address space */
08: DMI rescale(addr, init node num);
09: DMI munmap(addr); /* deallocate the global address space */
10: ...; /* a finalization phase of this application */
11: }
12:
13: int DMI itergroup(int rank, int pnum, int64 t addr) {
14: struct data t data;
15: int iter;
16: DMI read(addr, sizeof(data), &data, GET); /* restore */
17: ...; /* calculate the role of this thread based on rank and pnum */
18: for(iter = 0; iter < 100 && data.iter < ITER MAX; iter++, data.iter++) {
19: ...; /* the body of each iteration */
20: }
21: DMI write(addr, sizeof(data), &data, PUT); /* checkpoint */
22: return data.iter != ITER MAX;
23: }

Fig. 6 The outline of a reconfigurable DMI program (A simple version).

01: void DMI main(int argc, char **argv) {
02: struct data t data; /* the data to be checkpointed and restored */
03: int init node num = atoi(argv[1]); /* the initial number of nodes */
04: ...; /* an initialization phase of this application */
05: int64 t addr = DMI mmap(sizeof(data), 1); /* allocate a global address space */
06: data.iter = 0; /* a current iteration number */
07: DMI write(addr, sizeof(data), &data, PUT); /* write to the global address space */
08: DMI rescale(addr, init node num);
09: DMI munmap(addr); /* deallocate the global address space */
10: ...; /* a finalization phase of this application */
11: }
12:
13: int DMI itergroup(int rank, int pnum, int64 t addr) {
14: struct data t data;
15: DMI read(addr, sizeof(data), &data, GET); /* restore */
16: ...; /* calculate the role of this thread based on rank and pnum */
17: while(data.iter < ITER MAX) {
18: if(DMI check rescale()) {
19: break;
20: }
21: ...; /* the body of each iteration */
22: data.iter++;
23: }
24: DMI write(addr, sizeof(data), &data, PUT); /* checkpoint */
25: return data.iter != ITER MAX;
26: }
27:
28: int DMI judge rescale(DMI node t *in nodes, DMI node t *out nodes, DMI node t *cur nodes, int
in node num, int out node num, int cur node num) {
29: return in node num + out node num >= 1;
30: }

Fig. 7 The outline of a reconfigurable DMI program (A refined version).

to be restored from the global address space.
4.1.2 A Simple Version

With these observations, we propose the programming in-
terfaces shown in Fig. 6 (which is refined later in Fig. 7). In
Fig. 6 the initialization and finalization phases are expressed as
DMI main() and each itergroup is expressed as DMI itergroup().

DMI firstly executes DMI main() using one thread (line 1).
Here a programmer can describe the initialization phase of his
application. When the programmer calls DMI rescale(addr,
init node num) (line 8), DMI waits until init node num nodes
become available and then creates one thread per core on
these nodes. Next, all these threads created by DMI execute

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

function itergroup wrapper(thread id, args addr):
while 1 do

pnum← $thread num
barrier(pnum + 1) /* barrier A */
my rank← $ranks[thread id]
ret← DMI itergroup(my rank, pnum, args addr) /* itergroup */
if my rank == 0 and ret == 0 then

$exit flag← 1
endif
barrier(pnum + 1) /* barrier B */
barrier(pnum + 1) /* barrier C */
if $flags[thread id] == 1 then

break
endif

endwhile

function DMI rescale(args addr):
$exit flag← 0
foreach thread id in maximal # of threads do

$flags[thread id]← 0
endforeach
pnum← 0
RunningThread← ∅
while 1 do

NewNode← ∅
DeleteNode← ∅
NewThread← ∅
DeleteThread← ∅
old pnum← pnum
foreach node in the joining nodes do

NewNode← NewNode ∪ {node}
foreach i in # of cores of the node node do

thread id← a unique thread ID
NewThread← NewThread ∪ {thread id}
RunningThread← RunningThread ∪ {thread id}
nodes[thread id]← node
pnum← pnum + 1

endforeach
endforeach

Fig. 8 An algorithm of DMI rescale() and a wrapper function of DMI itergroup() (leading to Fig. 9).

DMI itergroup(int rank, int pnum, int64 t addr) (line 13), where
pnum is the number of threads involved in this itergroup, rank is
the rank of this thread (0≤rank<pnum) and addr is the first ac-
tual argument of DMI rescale() (line 8). Thus the programmer
can pass arbitrary data from DMI main() to DMI itergroup() and
from DMI itergroup() to the next DMI itergroup() by storing that
data into the global address space pointed (directly or indirectly)
by the addr. The programmer can generally describe each iter-
group as DMI itergroup() as follows: (1) Restore the data check-
pointed by the previous itergroup from the global address space
(line 16); (2) Execute an SPMD computation based on rank and
pnum (line 19); (3) Checkpoint the necessary data to the global
address space (line 21). In Fig. 6, for example, a current iteration
number is checkpointed and restored.

In order to improve the responsiveness to the joining and leav-
ing requests of nodes triggered by some external factors, the ex-
ecution time of each itergroup has to be appropriately short since
the nodes can actually join and leave only between itergroups.
This can be achieved simply by finishing DMI itergroup() ev-
ery appropriate number of iterations, for example every 100 it-
erations (line 18). Here the programmer can specify whether
the itergroup is the final itergroup or not, namely, whether the
total computation has completed or not, by the return value of
DMI itergroup() of the thread with rank 0 (line 22). If the return
value is 0, DMI rescale() called from DMI main() returns (line
8). On the other hand, if the return value is not 0, DMI handles
the joining and leaving requests being published at the time, re-
configures a set of nodes and a set of threads transparently and

then creates one thread per core on these nodes. Next, all these
threads start to execute DMI itergroup(int rank, int pnum, int64 t
addr) with a new rank and pnum. Thus a new itergroup starts.
4.1.3 A Refined Version

Although the code shown in Fig. 6 works well with reconfigu-
ration, in terms of performance, it is a bit wasteful to once check-
point and then restore data even when no node is publishing a
joining or leaving request. Thus, as shown in Fig. 7, by using
DMI check rescale() a programmer can finish the itergroup only
when the reconfiguration becomes mandatory. Specifically, when
the programmer calls DMI check rescale() (line 18), DMI ex-
ecutes DMI judge rescale(DMI node t *in nodes, DMI node t
*out nodes, DMI node t *cur nodes, int in node num, int
out node num, int cur node num) defined in his program (line
28) and the return value of the DMI judge rescale() becomes the
return value of the DMI check rescale(). Here the arguments of
the DMI judge rescale() are a set of joining nodes in nodes, a
set of leaving nodes out nodes, a set of currently running nodes
cur nodes, the number of joining nodes in node num, the number
of leaving nodes out node num and the number of currently run-
ning nodes cur node num. Therefore the programmer can flex-
ibly program the condition that finishes the itergroup and thus
control the condition for the reconfiguration.

4.2 Implementation
Simply, at the end of a itergroup, a set of nodes and a set

of threads can be reconfigured as follows: (1) Retrieve all the
threads involved in the itergroup; (2) Handle the joining/leaving

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

foreach node in the leaving nodes do
DeleteNode← DeleteNode ∪ {node}
foreach thread id in thread IDs of all the threads on the node node do

DeleteThread← DeleteThread ∪ {thread id}
RunningThread← RunningThread \ {thread id}
pnum← pnum − 1
$flags[thread id]← 1

endforeach
endforeach
$thread num← pnum
barrier(old pnum + 1) /* barrier C */
rank← 0
foreach thread id in RunningThread do

$ranks[thread id]← rank
rank← rank + 1

endforeach
foreach node in NewNode do

handle the joining of the node node
endforeach
foreach thread id in NewThread do

handle[thread id] ← thread create(nodes[thread id], itergroup wrapper, thread id, args addr) /* cre-
ate a thread on the node nodes[thread id]. This thread invokes itergroup wrapper(thread id, args addr) */

endforeach
barrier(pnum + 1) /* barrier A*/
foreach thread id in DeleteThread do

thread join(handle[thread id]) /* retrieve a thread */
$flags[thread id]← 0

endforeach
foreach node in DeleteNode do

handle the leaving of the node node
endforeach
barrier(pnum + 1) /* barrier B */
if $exit flag == 1 then

break
endif

endwhile
...

Fig. 9 An algorithm of DMI rescale() and a wrapper function of DMI itergroup() (following to Fig. 8).

requests of nodes and determine the set of nodes involved in the
next itergroup; (3) Create one thread per core on the nodes and
start the next itergroup with the set of new threads. It is, how-
ever, wasteful to retrieve all the threads at every reconfiguration.
In fact, since it is often the case that a just small, not large, part
of the set of nodes changes at the reconfiguration, it is wasteful
to once retrieve and again create threads on the nodes that con-
tinue to run over the reconfiguration. Therefore we propose an
algorithm for reconfiguring the set of nodes and the set of threads
without retrieving the threads on the nodes that continue to run
over the reconfiguration.

The algorithm is shown in Figs. 8 and 9. Figures 8
and 9 describe how DMI itergroup() is invoked (function
itergroup wrapper()) and what DMI rescale() does (function
DMI rescale()). In Figs. 8 and 9 the variables prefixed with
$ are on a global address space and other variables are local
to each thread. Specifically, $thread num indicates the num-
ber of threads involved in the current itergroup, $exit flag indi-
cates whether the current itergroup is the final itergroup or not,
$ranks[thread id] indicates the rank of the thread with thread
ID thread id, $flags[thread id] indicates whether the thread with
thread ID thread id is going to be retrieved or not. Here a thread
ID means a unique descriptor for each thread. The thread ID of a
thread does not change throughout its lifetime but the rank of the
thread changes at every itergroup.

barrier(pnum) synchronizes pnum threads. In particular, bar-
rier(pnum+1) indicates that the pnum threads involved in the iter-
group and the thread executing DMI rescale() are synchronized
together. In Figs. 8 and 9 three types of barriers are combined so-

phisticatedly, where barrier A guarantees that the thread execut-
ing DMI rescale() has already set $ranks[∗], barrier B guarantees
that the thread with rank 0 has already set $exit flag, and barrier
C guarantees that the thread executing DMI rescale() has already
set $thread num and $flags[∗].

The reason why this algorithm retrieves threads and handles
the leaving of nodes not before but after barrier A is that by doing
these operations after barrier A, which determines the start tim-
ing of each itergroup, these heavy operations can be overlapped
with the next itergroup. This overlapping considerably reduces
the time from the end of the itergroup to the start of the next iter-
group.

5. Evaluations of Performance and Pro-
grammability

This section compares the basic performance and the pro-
grammability of DMI with those of MPI and also evaluates the
performance and the programmability of parallel computational
reconfiguration in DMI. The reason why we compare DMI’s per-
formance with MPI’s performance is that MPI is a de facto stan-
dard in high-performance parallel programming and is easy to
optimize its performance appropriately.

5.1 Experimental Settings
The experimental platform is the cluster environment com-

posed of 16 nodes interconnected by 10 Gbit Ethernet. Each
node contains 2 Intel Xeon E5530 2.40 GHz (4 physical cores but
8 logical cores with hyper-threading) CPUs, 24 GB of memory,
running the Linux OS with the 2.6.26-2-amd64 kernel. We used

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

gcc 4.3.2 with an -O3 option for DMI, and OpenMPI 1.4.2 and
mpich2-1.2.1p1 with an -O3 option for MPI. When we executed
a DMI program using n (1 ≤ n ≤ 128) cores, we created 8 threads
on �n/8	 nodes and the remaining n−8×�n/8	 threads on another
node. Inside one node, DMI threads communicated through their
shared memory. On the other hand, when we executed a MPI
program using n (1 ≤ n ≤ 128) cores, we created 8 processes on
�n/8	 nodes and the remaining n−8×�n/8	 processes on another
node.

5.2 A PDE Solver Using a Jacobi Method
This experiment solves a partial differential equation of heat

conduction in a 3-dimensional cube using a Jacobi method by
dividing the cube into 5123 elements. In this Jacobi method,
the data to be checkpointed and restored are a current iteration
number and the values of 5123 elements. The algorithm of each
itergroup is as follows: (1) One thread divides the entire cube
into rectangular parallelepiped domains evenly in the direction of
the z-axis among all threads, each of which has 5142 ghost el-
ements [23], [29] in its left and right neighboring domains; (2)
Each thread i reads the values of the elements of the domain i

from a global address space; (3) Each thread i repeats from (4) to
(6) until DMI check rescale() tells that reconfiguration becomes
mandatory. If mandatory, each thread i finishes this itergroup af-
ter checkpointing the current iteration number and the values of
the elements of the domain i to the global address space; (4) Each
thread i writes the values of the ghost elements for the neighbor-
ing domains i − 1 and i + 1 to the global address space; (5) All
the threads synchronize and then each thread i reads the values of
the ghost elements that were written by the neighboring threads
i − 1 and i + 1 in (4); (6) Each thread i computes the 27-point
stencil of the domain i. Here note that as a set of threads changes
across itergroups, the domain that each thread works on changes
and thus the access locality of each thread changes. Therefore
this experiment sets the page size of the global address space for
the ghost elements to 5142×sizeof(double) and uses DMI write()
with an EXCLUSIVE mode in (4) and DMI read() with a GET
mode in (6) in order to adapt data distribution to the change of
the access locality dynamically according to the observed access
patterns.

First, Fig. 10 shows the weak scalability of DMI (without any
reconfiguration) and MPI to compare the basic performance of
DMI with that of MPI. Figure 10 indicates that DMI achieved
similar performance to mpich2 and outperformed OpenMPI.

Second, Fig. 11 shows the execution time of each iteration in
DMI when we started the computation on 4 nodes (32 threads on
4 nodes in total), added 12 nodes at the end of (about) the 30-th
iteration (128 threads on 16 nodes in total) and then removed 8
nodes at the end of (about) the 60-th iteration (64 threads on 8
nodes in total). Figure 11 shows 3 lines. The line labeled DMI
is the result of this experiment. The line labeled DMI(put) is the
result when we used DMI write() with a PUT mode instead of
an EXCLUSIVE mode as the DMI write() in (4). For compari-
son, the line labeled DMI(pv) is the result based on a processor
virtualization model, which we have investigated in detail in our
previous work [9]. In this processor virtualization model, we cre-

Fig. 10 The scalability of the Jacobi method.

Fig. 11 The execution time of each iteration of the Jacobi method with re-
configuration.

ated 128 threads in the beginning. Then DMI mapped these 128
threads to available nodes automatically at each reconfiguration
through transparent thread migration. Specifically, 4 threads are
mapped on each physical core between the 0-th and the 30-th it-
eration (since 4 nodes (=32 cores) and 128 threads in total), 1
thread is mapped on each core between the 31-st and the 60-th
iteration (since 16 nodes (=128 cores) and 128 threads in total),
and 2 threads are mapped on each core between the 61-st and the
90-th iteration (since 8 nodes (=64 cores) and 128 threads in to-
tal). However, here we ignore the time for reconfiguration (i.e.,
the time required for thread migration in the processor virtualiza-
tion model and the time required for checkpointing and restoring
in the processor non-virtualization model), because the mecha-
nism of thread migration is complicated and out of the scope of
this paper and because the reconfiguration time is less critical than
the execution time of each iteration for the total execution time of
long-running iterative applications, considering that reconfigura-
tion does not happen so often in practical. In this way, each point
of DMI(pv) in Fig. 11 is the execution time of each iteration and
does not include any time requried for thread migration. Also,
each point of DMI in Fig. 11 does not include any time required
for checkpointing and restoring. Figure 11 indicates that DMI
can adapt the parallelism efficiently to the increase or decrease
of available resources through the reconfiguration. In contrast,
the execution time of DMI(put) did not change even when we in-
creased or decreased nodes. This fact indicates that DMI write()
with the EXCLUSIVE mode is pretty effective for adapting data
distribution to the change of access locality over the reconfigura-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

Table 1 The breakdown of the reconfiguration time [seconds].

Jacobi FEM Pagerank
checkpoint(32→128 threads) 0.900 1.18 0.621

restore(32→128 threads) 0.949 7.44 18.0
checkpoint(128→64 threads) 1.29 1.46 0.898

restore(128→64 threads) 0.928 8.92 23.0

Fig. 12 Stress analysis using the finite element method.

tion. In addition, the fact that the execution time of DMI(pv) was
much higher than that of DMI between the 0-th and the 30-th iter-
ation indicates that assigning more than 1 threads to each physical
core degrades performance terribly because of the overhead that
we mentioned in Section 2.1. Thus, in terms of performance, a
processor non-virtualization model is much preferable to a pro-
cessor virtualization model. Again note that the execution time
of each iteration is more critical than the reconfiguration time for
the long-running iterative applications.

Third, Table 1 shows the breakdown of the reconfiguration
time. In Table 1, “checkpoint” means the time required for check-
pointing data to the global address space before the reconfigu-
ration (in this Jacobi method, the current iteration number and
the values of 5123 elements), and “restore” means the time re-
quired for re-calculating the role of each thread among the set of
new threads (in this Jacobi method, which domain each thread
should work on) and restoring the data from the global address
space after the reconfiguration. In fact, 1.03 MB of data is check-
pointed/restored to/from the global address space.

Fourth, with respect to programmability, the lines of the MPI
program was 147 and the lines of the DMI program without
any reconfiguration was 168 (both excluding comment lines and
empty lines). We confirmed that adding only 11 lines to this DMI
program made it reconfigurable.

5.3 Stress Analysis Using a Finite Element Method
This experiment analyzes the stress of the 3-dimensional cube

with the force and the boundary conditions shown in Fig. 12 us-
ing the finite element method with 903 elements. These elements
are distorted up to 200 degrees around the z-axis based on the
Sequential Gauss Algorithm. This finite element method is re-
duced to the problem of solving the linear simultaneous equa-
tion Ax = b, where A is the sparse matrix representing the con-
nectivity between elements and b is the vector representing the
force and the boundary conditions. This is a real-world and hard-
to-converge problem used in the parallel programming competi-
tion in Japan [2] and various engineering methods are essential

Fig. 13 The scalability of the finite element method.

Fig. 14 The execution time of each iteration of the finite element method
with reconfiguration.

to solve. While we omit the details, this experiment uses the it-
erative method called the BiCGSafe method, with an irregular

domain decomposition considering load balancing, deep domain
overlapping using the Restricted Additive Schwarz Method, the
RCM ordering of the elements of each domain and precondition-
ing using the blocked ILU decomposition with fill-ins, which
is the champion algorithm of the contest. In this finite element
method, the data to be checkpointed and restored are a current it-
eration number, 13 vectors and 2 variables used in the BiCGSafe
method.

First, Fig. 13 shows the weak scalability of DMI (without any
reconfiguration) and MPI. Figure 13 indicates that DMI achieved
lower scalability than mpich2. This is because the performance
of the collective function for synchronizing all 128 threads, which
is called as much as 22 times in each iteration of the BiCGSafe
method, becomes worse than that of MPI, as the number of
threads increases. Figure 13 also indicates that OpenMPI per-
formed much worse than DMI and mpich2. Here this low per-
formance of OpenMPI was attributed to the slow point-to-point
send/receive communication of OpenMPI. Specifically, it took
2.39 seconds in mpich2 but 9.03 seconds in OpenMPI to simply
send and receive 65,536 bytes of data 10,000 times between two
nodes.

Second, as with Fig. 11, Fig. 14 shows the execution time of
each iteration in DMI when we started the computation on 4
nodes, added 12 nodes at the end of (about) the 30-th iteration
and then removed 8 nodes at the end of (about) the 60-th iteration.
Figure 14 indicates that DMI can also adapt the parallelism effi-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

ciently through the reconfiguration for complicated and irregular
scientific applications, and that the processor non-virtualization
model outperforms better than the processor virtualization model.

Third, Table 1 shows the breakdown of the reconfiguration
time. The breakdown of 7.44 seconds required for “restore”
when expanding 32 threads to 128 threads was 3.90 seconds for
restoring 13 vectors (1.03 GB in total) from the global address
space and generating a preconditioning matrix, and 3.54 seconds
for reading the sparse matrix from a file (3.85 GB in total), re-
decomposing domains and re-ordering elements based on the set
of new threads. The breakdown of 8.92 seconds required for “re-
store” when shrinking 128 threads to 64 threads was 6.06 seconds
for restoring the 13 vectors and generating a preconditioning ma-
trix, and 2.85 seconds for reading the file, re-decomposing the
domains and re-ordering the elements. In this experiment since
the matrix file existed entirely on the file cache of an operating
system, it will take more time if the matrix file exists on a disk.

Fourth, with respect to programmability, the lines of the MPI
program was 2,572 and the lines of the DMI program without
reconfiguration was 2,368. We also confirmed that adding 187
lines to this DMI program made it reconfigurable. The differ-
ence between the 2,572 lines of DMI and the 2,368 lines of MPI
was primarily attributed to whether a programmer can program
the exchange of the values of the ghost elements in a global-view
or not. Since this finite element method requires irregular do-
main decompositions, in MPI the calculation is very complicated
and error-prone of the index of the local buffer from which data
should be sent, the process to which the data should be sent, and
the index of the local buffer to which the received data should be
stored. In contrast, in DMI the programmer can productively pro-
gram just by reading/writing from/to the global addresses of the
ghost elements. In essence, DMI is easier to program than MPI
thanks to its global address space.

5.4 Pagerank Calculation
This experiment calculates a pagerank [21] of a large-scale web

graph. The experiment generates a web graph similar to the one
in the real world with the following properties:
• The total number of vertexes is 128 million.
• The entire graph is composed of 128 sub-graphs, each of

which has 1 million vertexes.
• The in-degrees of vertexes are distributed log-normally

along the following probability density function [21]:

p(d) =
1

dσ
√

2π
e−((ln d−μ)/σ)2/2

where p(d) is the number of vertexes with in-degree d, μ and
σ are the mean and the standard deviation, respectively, of
the corresponding normal distribution.

• Edges are directed and the total number of edges is 447 mil-
lion. Each vertex has 4 incoming edges in average and the
standard deviation of the number of incoming edges is 1.3.
For any vertex vi, the rate of the incoming edges from the
vertex in the sub-graph to which the vertex vi belongs to the
incoming edges from the vertex in other sub-graphs is 0.1.
Consequently, the total number of edge-cuts between 128

Fig. 15 The scalability of the pagerank calculation.

sub-graphs is 44 million.
Let n be the total number of nodes in the web graph, vi be a

vertex (a web page or a person in a social graph), ad j+(vi) be a
set of vertexes to which the vertex vi links, and ad j−(vi) be a set
of vertexes which have links to the vertex vi. The pagerank of the
vertex vi is defined as the value of rank(vi, t) when the following
recurrence formula converges [21]:

rank(vi, t) = (1)
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1/n if t = 0,

0.15/n + 0.85
∑
v j∈ad j−(vi) rank(v j, t − 1)/|ad j+(v j)| if t ≥ 1.

The experiment implements this iterative algorithm in DMI and
MPI. In this pagerank calculation, the data to be checkpointed
and restored are a current iteration number and the values of all
vertexes.

First, Fig. 15 shows the weak scalability of DMI (without any
reconfiguration) and MPI. Figure 15 indicates that DMI outper-
formed much mpich2 and OpenMPI. The reason for this low per-
formance of mpich2 and OpenMPI was that all-to-all communi-
cation performance of mpich2 and OpenMPI became poorer than
DMI as the size of transferred data became larger. In each itera-
tion of this pagerank calculation, in case of using 128 cores, each
core sends about 21.5 KB of data to all other 127 cores, literally
“all-to-all” dense communications. Figure 17 shows the poten-
tial communication performance of DMI, mpich2 and OpenMPI,
that is, the time required for each of 128 cores to send x bytes of
data to all other 127 cores simultaneously. In MPI, we used 127
MPI Send() and 127 MPI Recv() for each process. In DMI, we
used DMI group write() and DMI group read() for each thread,
by which each thread sends data to other 120 threads *3. At
this point, since DMI group write() and DMI group read() inter-
nally aggregates the data sent to the same node into one mes-
sage, the number of messages triggered by each thread is reduced
to 120/8 = 15. Each point in Fig. 17 is the average time of 10
runs and the error bar of each point indicates the maxmum time
and the minimum time in the 10 runs. Figure 17 indicates that
OpenMPI’s performance was noisy and in particular the perfor-
mance of x=21.5 KB was better in the order of DMI, mpich2 and
OpenMPI, which accounts for the low performance of mpich2
and OpenMPI in the pagerank calculation. We do not yet inves-

*3 The number of threads to which the data needs to be sent through inter-
node communication is 128 − 8 = 120.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

Fig. 16 The execution time of each iteration of the pagerank calculation
with reconfiguration.

Fig. 17 The time of all-to-all communications using 128 cores (8 cores×16
nodes).

tigate the internal implemention of MPI Send()/MPI Recv() of
mpich2 and OpenMPI, and thus not yet clarify the reason why
DMI outperforms even mpich2 when data size is enough large.

Second, as with Fig. 11, Fig. 16 shows the execution time of
each iteration in DMI when we started the computation on 4
nodes, added 12 nodes at the end of (about) the 30-th iteration
and then removed 8 nodes at the end of (about) the 60-th itera-
tion. Figure 16 indicates that DMI can also adapt parallelism effi-
ciently through reconfiguration for complicated and irregular iter-
ative graph applications, and that the processor non-virtualization
model outperforms better than the processor virtualization model.
We can expect the similar results for many other iterative graph
algorithms, such as the shortest path problem and connected com-
ponents, because they can be formulated similar to the formula
(1) and have the similar communication pattern.

Third, Table 1 shows the breakdown of the reconfiguration
time. In fact, 0.976 GB of data is checkpointed and restored as
the values of all vertexes.

Fourth, with respect to programmability, the lines of the MPI
program was 738 and the lines of the DMI program without re-
configuration was 693. We also confirmed that adding only 29
lines to this DMI program made it reconfigurable. The differ-
ence between the 738 lines of DMI and the 693 lines of MPI was
primarily attributed to whether a programmer can program the
exchange of values between sub-graphs in a global-view or not.
MPI program requires complicated and error-prone calculations
of the indices from which the data should be sent and to which
the data should be received, but in DMI the programmer can pro-

ductively program just by reading/writing from/to the global ad-
dresses of each vertex value.

6. Related Work

SRS [26], DyRecT [8] and PCM [19], [20] are reconfigurable
frameworks based on a message passing model and a proces-
sor non-virtualization model. In these frameworks a program-
mer can describe a reconfigurable MPI program by inserting
into a normal MPI program APIs for registering the data to be
checkpointed before a reconfiguration and APIs for restoring the
data after the reconfiguration. In SRS, for example, by call-
ing SRS Register(“foo”, a, size, BLOCK,...) in advance, the
block distributed data each block of which is a local array a

of size bytes on each process is automatically checkpointed by
the name of “foo” before the reconfiguration. Then, by call-
ing SRS Read(“foo”, b, BLOCK,...) after the reconfiguration,
the data checkpointed by the name of “foo” is automatically re-
distributed by block among a set of new processes and then each
block is restored to a local array b on each process. In sum-
mary, these frameworks re-distribute the data transparently if the
programmer specifies the pointer from which the data should be
checkpointed, the pointer to which the data should be restored
and the type of the data distribution. Here note that checkpoint-
ing/restoring the data is expressed as a write/read operation us-
ing the “global” name of “foo,” that is, a kind of global address
space. In other words, we can consider that these frameworks
provide the message passing model for the body of a parallel
computation but the global address space model for checkpoint-
ing/restoring data at the reconfiguration, which implies that these
frameworks have already achieved the global address space over
the reconfiguration to some extent. However, this global address
space is a very simple and limited one that can be used only for re-
distributing the data with regular structures at the reconfiguration
just as the programmer describes, compared to the general and
flexible global address space of DMI. In any way, these frame-
works are based on the message passing model not a PGAS model
and thus the programmer cannot enjoy good programmability of
the PGAS model that we confirmed in Sections 5.3 and 5.4.

The framework by Scherer [25] is a reconfigurable framework
based on a DSM model. In this framework the programmer can
describe a reconfigurable OpenMP program on a distributed envi-
ronment. This framework extends the cache coherence protocols
of TreadMarks [27] so that it can support the global address space
with cache coherence over the reconfiguration. Then the frame-
work translates the OpenMP program described by the program-
mer into a reconfigurable TreadMarks program. However, this
framework does not investigate any locality-aware techniques for
improving the performance of the reconfigurable computations
based on the PGAS model such as selective cache read/write.

Selective cache read/write is novel in that it realizes not only
a hybrid cache protocol of an invalidate protocol and an update
protocol at each read/write granularity but also get/put operations,
which enables flexible optimization of access locality. Most exist-
ing PGAS frameworks such as Co-Array Fortran [28], UPC [16],
Global Arrays [23], X10 [4] and Chapel [6] support only get/put
operations and do not support cache and dynamic change of data

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

distribution. In contrast, most existing DSM frameworks such
as TreadMarks [5], JIAJIA [13] and DSM-Threads [22] support
cache but a programmer cannot freely mix the invalidate protocol
and the update protocol. Furthermore, page-based DSMs, which
manage coherency of a global address space depending on the
memory protection mechanism of an operating system, cannot
realize get operations in principle. This is because in the page-
based DSMs, when a signal handler hooks a SIGSEGV signal
caused by a read fault, the signal handler has to set the protection
of the page to readable before the signal handler returns. Other-
wise, the SIGSEGV will continue to be invoked forever. How-
ever, making the protection of the page readable implies that not
only the read that is causing the read fault but also all subsequent
reads are allowed. Consequently, this is not the get operation
but equivalent to cache the page. Thus, since there is no way
to allow only the read that is causing the current read fault as
long as the page-based DSM depends on the memory protection
mechanism, the page-based DSM cannot realize the get opera-
tions. DMI solves these problems by managing coherency at user
level.

7. Conclusions

This paper proposes how to design and implement a global-
view-based PGAS framework that enables easy programming of
reconfigurable and high-performance parallel iterative compu-
tations. The contributions of this paper are described in Sec-
tion 1.2. The novelty of this paper is that we designed and im-
plemented a framework for parallel computational reconfigura-
tion based on a global-view-based PGAS model and a proces-
sor non-virtualization model, supported by our observations that
(1) a processor non-virtualization model is more suitable than a
processor virtualization model because the performance of run-
ning each iteration is quite critical for the total performance of
long-running iterative applications and that (2) the global-view-
based PGAS model is more programmable than a message pass-
ing model for its potentially good programmability and especially
for easy programming of the dynamic increase and decrease of
threads because in the global-view-based PGAS model it is not
the programmer but the framework that manages the complicated
data locations. To the best of our knowledge, this is the first work
that achieves reconfiguration based on a PGAS model. Selective
cache read/write is also a novel elemental technique for adapting
data distribution to the actually observed access patterns in re-
configurable computations. Finally, we evaluated DMI using not
simple and regular benchmark applications but irregular, real-

world and large-scale applications.
As our future work, we are planning to expand our program-

ming interfaces so that DMI can support not only synchronous
and iterative applications but also broader range of applications
that allow asynchronous joining and leaving of nodes.

Reference

[1] T2K, available from 〈http://www.cc.u-tokyo.ac.jp/〉.
[2] The 2nd Parallel Programming Contest on Cluster Systems, available

from 〈https://www2.cc.u-tokyo.ac.jp/procon2009-2/〉.
[3] TSUBAME2.0, available from 〈http://www.gsic.titech.ac.jp/en〉.
[4] The Cascade High Productivity Language, 9th International Workshop

on High-Level Parallel Programming Models and Supportive Environ-
ments, pp.52–60 (Apr. 2004).

[5] Amza, C., Cox, A.L., Dwarkadas, H., Keleher, P., Lu, H., Rajamony,
R., Yu, W. and Zwaenepoel, W.: TreadMarks: Shared Memory Com-
puting on Networks of Workstations, IEEE Computer, Vol.29, No.2,
pp.18–28 (Feb. 1996).

[6] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A.,
Ebcioglu, K., von Praun, C. and Sarkar, V.: X10: An Object-oriented
Approach to Non-uniform Cluster Computing, Proc. 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications, pp.519–538 (Oct. 2005).

[7] Chaudhary, V. and Jiang, H.: Techniques for Migrating Computations
on the Grid, Engineering the Grid: Status and Perspective, pp.399–
415 (Jan. 2006).

[8] Godard, E., Setia, S. and White, E.L.: DyRecT: Software support for
adaptive parallelism on NOWs, 15th IPDPS Workshops on Parallel
and Distributed Processing, pp.1144–1151 (May 2000).

[9] Hara, K., Nakashima, J. and Taura, K.: A PGAS Framework Achiev-
ing Thread Migration Unrestricted by the Address Space Size (in
Japanese), IPSJ Transactions on Programming (2011).

[10] Hara, K. and Taura, K.: A Global Address Space Framework for Ir-
regular Applications (accepted, short paper), High Performance Dis-
tributed Computing (June 2010).

[11] Hara, K., Taura, K. and Chikayama, T.: DMI: A Large Distributed
Shared Memory Interface Supporting Dynamically Joining/Leaving
Computational Resources (in Japanese), IPSJ Trans. on Programming,
Vol.3, No.1, pp.1–40 (2010).

[12] Bailey, D.H., Barszcz, E., Barton, J., Browning, D., Carter, R.,
Dagum, L., Fatoohi, R.A., Fineberg, S., Frederickson, P., Lasinski,
T., Schreiber, R., Simon, H.D., Venkatakrishnan, V. and Weeratunga,
S.: THE NAS PARALLEL BENCHMARKS, Technical Report, RNR-
94-007 (Mar. 1994).

[13] Hu, W., Shi, W., Tang, Z. and Zhou, Z.: JIAJIA: An SVM System
Based on a New Cache Coherence Protocol, Technical Report, Center
of High Performance Computing Institute of Computing Technology
Chinese Academy of Sciences (Jan. 1998).

[14] Huang, C., Lawlor, O. and Kale, L.V.: Adaptive MPI, 16th Interna-
tional Workshop on Languages and Compilers for Parallel Comput-
ing, pp.306–322 (Oct. 2003).

[15] Huang, C., Zheng, G., Kale, L. and Kumar, S.: Performance Evalua-
tion of Adaptive MPI, 11th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp.12–21 (Mar. 2006).

[16] Husbands, P., Iancu, C. and Yelick, K.: A Performance Analysis of the
Berkeley UPC Compiler, Proc. 17th Annual International Conference
on Supercomputing, pp.63–73 (2003).

[17] Naik, V.K., Midkiff, S.P. and Moreira, J.E.: A Checkpointing Strat-
egy for Scalable Recovery on Distributed Parallel Systems, 1997
ACM/IEEE Conference on Supercomputing, pp.1–19 (Nov. 1997).

[18] Johnson, K.L., Kaashoek, M.F. and Wallach, D.A.: CRL: High-
Performance All-Software Distributed Shared Memory, Proc. 15th
Symposium on Operating Systems Principles, Vol.29, No.5, pp.213–
228 (Mar. 1995).

[19] El Maghraoui, K., Desell, T.J., Szymanski, B.K. and Varela, C.A.:
Dynamic Malleability in Iterative MPI Applications, 7th IEEE Inter-
national Symposium on Cluster Computing and the Grid, pp.591–598
(May 2007).

[20] El Maghraouia, K., Desella, T., Szymanskia, B.K., Terescob, J.D. and
Varela, C.A.: Towards a Middleware Framework for Dynamically Re-
configurable Scietific Computing, Advances in Parallel Computing,
Vol.14, pp.275–301 (2005).

[21] Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I.,
Leiser, N. and Czajkowski, G.: Pregel: A System for Large-scale
Graph Processing, Proc. 2010 International Conference on Manage-
ment of Data, pp.135–146 (2010).

[22] Mueller, F.: Distributed Shared-Memory Threads: DSM-Threads,
Workshop on Run-Time Systems for Parallel Programming, pp.31–40
(Apr. 1997).

[23] Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H.
and Apra, E.: Advances, Applications and Performance of the Global
Arrays Shared Memory Programming Toolkit, International Journal
of High Performance Computing Applications, Vol.20, No.2, pp.203–
231 (2006).

[24] Sankaran, S., Squyres, J.M., Barrett, B., Sahay, V. and Lumsdaine,
A.: The Lam/Mpi Checkpoint/Restart Framework: System-Initiated
Checkpointing, International Journal of High Performance Comput-
ing Applications, Vol.19, pp.479–493 (2005).

[25] Scherer, A., Lu, H., Gross, T. and Zwaenepoel, W.: Transparent Adap-
tive Parallelism on NOWs Using OpenMP, Vol.34, No.8, pp.96–106
(Aug. 1999).

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.1

[26] Vadhiyar, S.S. and Dongarra, J.J.: SRS: A Framework for Developing
Malleable and Migratable Parallel Applications for Distributed Sys-
tems, International Journal of High Performance Applications and
Supercomputing, pp.291–312 (June 2003).

[27] Taura, K., Endo, T., Kaneda, K. and Yonezawa, A.: Phoenix: A
Parallel Programming Model for Accommodating Dynamically Join-
ing/Leaving Resources, ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp.216–229 (2003).

[28] Numrich, R.W. and Reid, J.: Co-array Fortran for parallel program-
ming, ACM SIGPLAN Fortran Forum, Vol.17, No.2, pp.1–31 (1998).

[29] Yelick, K., Hilfinger, P., Graham, S., Bonachea, D., Su, J., Kamil, A.,
Datta, K., Colella, P. and Wen, T.: Parallel Languages and Compilers:
Perspective from the Titanium Experience, Journal of High Perfor-
mance Computing Applications, Vol.21, No.3, pp.266–290 (2007).

Kentaro Hara was born in 1986. He re-
ceived his M.E. degree from the Graduate
School of Information Science and Tech-
nology, the University of Tokyo in 2011.
He has been working as a software engi-
neer at Google since 2011.

Kenjiro Taura was born in 1969. He re-
ceived his Ph.D. degree from the Gradu-
ate School of Science, the University of
Tokyo in 1997. He researched in the
Graduate School of Science at the Uni-
versity of Tokyo as an assistant professor
from 1996 to 2001. After that, he has been
researching in the Graduate School of In-

formation Science and Technology as a lecturer from 2001 to
2002 and then as an associate professor since 2002.

c© 2012 Information Processing Society of Japan

