
A Global Address Space Framework
for Irregular Applications

Kentaro Hara
The University of Tokyo

haraken@logos.ic.i.u-tokyo.ac.jp

Kenjiro Taura
The University of Tokyo

tau@logos.ic.i.u-tokyo.ac.jp

ABSTRACT
Practical parallel scientific applications with domain decom-
positions, such as finite element methods, require irregu-
lar domain decompositions of complicated-shaped objects.
However, existing PGAS frameworks, such as Global Arrays
and XcalableMP, have supported the productive description
of exchanging ghost points only for regular domain decom-
positions. With these backgrounds, we propose, implement
and evaluate Distributed Memory Interface (DMI), a global
address space framework for irregular applications. DMI
provides highly productive APIs called read-write-set for ir-
regular domain decompositions and complicated orderings
in practical scientific applications.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; G.1.8 [Numerical Analysis]: Partial Differential
Equations

General Terms
Algorithms, Languages, Performance

Keywords
Global address space, Finite element method, Productivity

1. INTRODUCTION
Existing PGAS frameworks such as UPC and Global Ar-

rays[5] have enabled the highly productive development of a
lot of high performance applications. However, since these
PGAS frameworks are designed mainly for applications with
regular communication patterns, it is difficult to improve the
performance of practical applications with irregular com-
munication patterns or to describe these applications pro-
ductively. In particular, in practical parallel scientific ap-
plications with domain decompositions such as finite ele-
ment methods (FEM) and multigrid methods, complicated-
shaped objects are decomposed into irregular domains using

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Figure 1: System components of DMI.

some graph partitioning algorithm such as METIS. In order
to execute these applications on a distributed memory sys-
tem, updating the element values in each domain requires
the values of boundary elements in its neighboring domains
(these boundary elements are referred to as ghost points[5,
3]), and this exchange of values of ghost points is the primary
hurdle in describing these applications. Hence frameworks
are required with which a programmer can productively de-
scribe the complicated exchange of values of ghost points
in scientific applications with irregular domain decompo-
sitions. However, most PGAS frameworks such as Xcal-
ableMP[3] and Global Arrays have supported only regular
domain decompositions, which decompose an n-dimensional
rectangular parallelepiped object into m-dimensional rect-
angular parallelepiped domains. Although Titanium[6, 2] is
also a PGAS framework which facilitates highly productive
description of parallel scientific applications with domain de-
compositions, the papers[6, 2] evaluate its performance us-
ing multigrid methods and adaptive mesh refinement meth-
ods based on only regular domain decompositions. Based
on these observations, we propose, implement and evalu-
ate Distributed Memory Interface (DMI), a global address
space framework for irregular applications. DMI introduces
read-write-set, APIs for the highly productive description of
exchanging values of ghost points for not only regular but
also irregular domain decompositions.

2. BASIC SYSTEM DESIGNS
DMI is a multi-threaded global address space framework

implemented as a shared library for C. DMI distinguishes be-
tween a global address space and a local memory as shown
in Fig.1. A local memory is a normal shared memory allo-
cated/deallocated by malloc()/free() and is read/written
normally. In contrast, a global address space is allocated/
deallocated by DMI_mmap()/DMI_munmap() and is read/written
by DMI_read()/DMI_write(). Specifically, a programmer
can access to the global address space by calling DMI_read

(int64_t addr,int64_t size,void *buf)/ DMI_write

(int64_t addr,int64_t size,void *buf), which reads/

Figure 2: An example FEM problem.

writes size bytes from/to the global address space addr

to/from a local memory buf. Like most page-based dis-
tributed shared memories (DSM), DMI partitions each global
address space into pages and guarantees the sequential con-
sistency of DMI_read() and DMI_write(), the address range
[addr, addr+size) of which is within one page. Here the
page size in each global address space can be specified ar-
bitrarily and explicitly by the programmer as with region-
based DSMs. Specifically, by calling DMI_mmap(int64_t

page_size,int64_t page_num,), the programmer can allo-
cate a global address space with page_num pages of page_size
bytes in size. Furthermore, DMI serves as a remote swap sys-
tem, supports dynamic joining/leaving of nodes during the
execution of a parallel application, provides highly flexible
and explicit APIs for improving data locality, but we leave
these details for another paper[4].

3. DESIGNS FOR IRREGULAR APPLICA-
TIONS

3.1 A Practical FEM
In practical scientific applications with domain decompo-

sitions, complicated-shaped objects are decomposed into ir-
regular domains using some graph partitioning algorithm
such as METIS. In addition, in order to improve the conver-
gence of iterative calculations in hard-to-converge problems,
the elements in each domain are often ordered based on or-
dering methods such as RCM ordering.

As an example problem, consider a 2-dimensional FEM
with 8 square-shaped elements as shown in Fig.2(A). There
are 16 node points 1 numbered as shown in Fig.2(A). These
numbers are referred to as global numbers. Each point has
connectivity to its neighboring 8 points and to the point
itself. Assume that there are 4 processors and that we de-
compose these 16 points into 4 domains. For each domain i,
we refer to the points within the domain i as interior points,
and we refer to the points within other domains but have
connectivity to at least one of the interior points of the do-
main i as ghost points. For example, the interior points of
domain 1 are 2,5,6 and 10, and the ghost points of domain
1 are 1,4,8,9,12 and 13. At each iterative calculation, each
processor must store the values of interior points and ghost
points to its local memory according to some ordering. Note

1To distinguish a machine node from a node point in an
FEM, we refer to the former as a node and refer to the
latter as a point.

that, for solving hard-to-converge problems, it is not suffi-
cient to simply store these values in order of interior points
and then ghost points. Although the best ordering depends
on problems, here we assume the ordering to be as shown in
Fig.2(B). We refer to the numbers obtained by this ordering
as local numbers. For example, the point in domain 1 for
which the local number is 2 has a global number of 4.

In essence, at each iterative calculation, each processor
(1) obtains the values of the ghost points from its neighbor-
ing processors; (2) stores the values of the interior points
and the ghost points to its local memory according to a
suitable ordering; and (3) updates the values of the inte-
rior points using a given connectivity. Obviously, the most
difficult task in describing this program is the exchange of
values of ghost points. Describing the exchange of values of
ghost points in a local-view programming framework, such
as MPI or Co-array Fortran which does not provide a global
address space, is a rather complicated task. This complex-
ity in local-view programming is attributed to the fact that
since connectivity is given by global numbers, a program-
mer must calculate the correspondence between the global
numbers and the local numbers, and then specify (1) the
values of the interior points to be sent and the processor
to which these values should be sent, and (2) the num-
ber of values that each processor should receive and the
processor from which they should be received, as well as
location of the local memory of the processor that should
store each received value. In contrast, the programmer can
easily describe the exchange of values of ghost points in a
global-view programming framework with a global address
space, using connectivity information given by the global
numbers. However, the performance of programs based on
global-view programming is generally lower than that based
on local-view programming. The primary reason is that
since most global-view programming frameworks support
only block-cyclic data distribution, these frameworks can-
not support data distribution along irregular domains, such
as that shown in Fig.2(A) unless very fine-grained data dis-
tribution is adopted, which also degrades the performance
because of the data management overhead. In summary,
local-view programming and global-view programming have
a tradeoff between performance and productivity.

3.2 read-write-set

3.2.1 Characteristics of Scientific Applications
Based on these analyses, DMI introduces APIs called read-

write-set, which manages point values efficiently in a man-
ner similar to local-view programming but facilitates highly
productive global-view programming. Before explaining the
APIs of read-write-set, we summarize the general character-
istics of scientific applications with domain decompositions.

An object O is composed of a finite number of points. The
connectivity between the points in O is given. The object O
is decomposed into n domains. Each domain i is composed
of a set of points Wi, a set of interior points. If i 6= j, then
Wi ∩ Wj = ∅ holds. For each domain i, a set of points Ri

is defined by connectivity as a set of points x ∈ O such that
there exists a point x′ ∈ Wi which has connectivity to the
point x. Namely, Ri is a set of interior points and ghost
points. Each processor i handles a domain i, that is, at
each iterative calculation each processor i reads the values
of the points in Ri and updates the values of the points in

Figure 3: Global address spaces in read-write-set.

Wi. Both Wi and Ri are ordered sets because some ordering
of the points in Wi and Ri must be defined. For example,
W1 = {2, 5, 6, 10} and R1 = {1, 2, 4, 8, 5, 6, 9, 12, 10, 13} in
Fig.2.

3.2.2 Programming Interfaces
Based on the above characteristics, read-write-set pro-

vides the following APIs which enable global-view program-
ming of irregular applications. Fig.4 shows a pseudo code
for solving an FEM problem by the CG method using read-
write-set APIs.

First, a programmer calls rwset decompose(O,i,Wi,Ri) for
each domain i in an object O. This API defines the fact
that the ordered set of the interior points of the domain i
is Wi and that the ordered set of the interior points and
the ghost points of the domain i is Ri. In other words,
the programmer defines the interior points and the ghost
points of each domain i by global numbers using this API.
Second, the programmer calls rwset alloc(O,i) for each do-
main i in O. This API returns a communication handle Hi

to read/write values of the points in Ri and Wi efficiently.
Note that rwset decompose() for all domains must be called
before any rwset alloc() is called. In subsequent iterations,
by calling rwset write(Hi,wbuf), the programmer can store
a value of the j-th (0 ≤ j < |Wi|) point in Wi from a lo-
cal memory wbuf [j] to a global address space. In addition,
by calling rwset read(Hi,rbuf), the programmer can load a
value of the j-th (0 ≤ j < |Ri|) point in Ri from the global
address space to a local memory rbuf [j]. Thus, the program-
mer can load/store values of the points in Ri/Wi from/to
a global address space to/from a local memory rbuf /wbuf
through a communication handle Hi.

In essence, since one domain is assigned to one processor
in most cases, most programs can be described as follows:
(1) each processor i calls rwset decompose() for a domain i;
(2) all processors are synchronized; (3) each processor i calls
rwset alloc() for the domain i and obtains a communication
handle Hi; (4) at each iteration each processor i reads/writes
values of the points in Ri/Wi from/to the global address
space through Hi using rwset read()/rwset write().

3.2.3 Implementations
Although read-write-set facilitates highly productive global-

view programming as mentioned above, read-write-set man-
ages point values efficiently in a manner similar to local-
view programming by internally transforming global num-
bers specified by the programmer into local numbers, by
which read-write-set manages point values.

First, when rwset decompose(O,i,Wi,Ri) is called, DMI
calls DMI_mmap() and allocates a global address space Mi

with one page, the size of which is |Wi| × (each point size)
bytes to store values of the points in Wi. The address in the
global address space Mi to which each value of the points in

void fem_code_of_processor_i(int i /* a processor i */
, int n /* the number of processors */
, int64_t o_addr /* an object to be decomposed */) {

int rn, wn, iter, u, v;
int *ri, *rbuf, *wi, *wbuf;
matrix_t *mat;
DMI_rwset_t rwset;

mat = a matrix of a domain i in CRS format;
wn = the size of W_i;
wi = malloc(sizeof(int) * wn);
wbuf = malloc(sizeof(double) * wn);
/* define W_i as an ordered set of global numbers */
if(i == 0) wi[0..wn-1] = {0,1,3,4};
else if(i == 1) wi[0..wn-1] = {2,5,6,10};
else if(i == 2) wi[0..wn-1] = {7,8,11,14};
else if(i == 3) wi[0..wn-1] = {9,12,13,15};
rn = the size of R_i;
ri = malloc(sizeof(int) * rn);
rbuf = malloc(sizeof(double) * rn);
/* define R_i as an ordered set of global numbers */
if(i == 0) ri[0..rn-1] = {0,1,3,7,4,2,5,8,9};
else if(i == 1) ri[0..rn-1] = {1,2,4,8,5,6,9,12,10,13};
else if(i == 2) ri[0..rn-1] = {3,4,7,8,5,9,11,14,12,15};
else if(i == 3) ri[0..rn-1] = {4,5,8,11,9,6,10,12,14,15,13};
for(u = 0; u < wn; u++) /* define initial values of W_i */
wbuf[u] = 0.00;

DMI_rwset_decompose(o_addr, i, wi, wn, ri, rn);
barrier between n processors;
DMI_rwset_alloc(&rwset, o_addr, i);

for(iter = 0; /* until convergence */; iter++) {
...; /* the CG method */
barrier between n processors;
DMI_rwset_write(&rwset, wbuf);
barrier between n processors;
DMI_rwset_read(&rwset, rbuf);
for(u = 0; u < wn; u++) {

wbuf[u] = 0;
for(v = mat->row[u]; v < mat->row[u + 1]; v++) {

wbuf[u] += mat->val[v] * rbuf[mat->col[v]];
}

}
...; /* the CG method */

}
DMI_rwset_free(&rwset);

}

Figure 4: A pseudo code for solving an FEM prob-
lem by the CG method using read-write-set.

Wi is stored depends on the order of the points in Wi. For
example, if the programmer specifies W0 = {0, 1, 3, 4}, W1 =
{2, 5, 6, 10}, W2 = {7, 8, 11, 14}, W3 = {9, 12, 13, 15}, then
four global address spaces M0, M1, M2, M3 are allocated in
the address order as shown in Fig.3. Each Ri, Wi and Mi are
preserved in O. Second, when rwset alloc(O,i) is called, for
each point x in Ri, DMI calculates which address in global
address spaces M0, · · · , Mn−1 should be accessed in order
to obtain a value of the point x. In other words, for each
point x in Ri, DMI calculates the location of the point x
in the global address spaces. As a result, an ordered set of
addresses Ai is constructed, the j-th address of which in-
dicates the address at which a value of the j-th point in
Ri is stored. Here Ai, Wi and Mi are preserved in a com-
munication handle Hi, which is a return value of this API.
Third, when rwset write(Hi,wbuf) is called at each iteration,
DMI calls DMI_write(the head address of Mi,|Wi|×(each
point size),wbuf). Note that the order of the points in
Wi indicates the address in a global address space Mi to
which each value in wbuf is stored. In other words, the
programmer can specify the correspondence between wbuf
and points in the global address space by the order of the
points in Wi. Incidentally, since DMI can locate Mi to be
local to the processor which issues the first DMI_write()

for Mi using APIs for improving data locality explicitly,

Figure 5: Stress anal-
ysis using an FEM.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

sp
ee
du
p
(p
er
 i
te
ra
ti
on
)

of processors

mpich2
OpenMPI

DMI
DMI_gview

Figure 6: The scalability of
DMI and MPI for a stress
analysis with an FEM.

the second or later DMI_write() for Mi is completed lo-
cally when this API is called several times. Forth, when
rwset read(Hi,rbuf) is called at each iteration, DMI calls
DMI_read(the j-th address in Ai,each point size,rbuf [j])
for each j (0 ≤ j < |Ai| = |Ri|). Note that the order of
the points in Ri indicates from which address in the global
address spaces each value in rbuf is loaded. In other words,
the programmer can specify the correspondence between
rbuf and points in the global address spaces by the order
of the points in Ri. Here calling DMI_read() for each ad-
dress in Ai requires too much overhead. Not only FEMs,
most irregular applications issue such discrete memory ac-
cesses. Hence DMI provides a mechanism to explicitly group
multiple put/get operations for discrete global address space
regions. For example, when the programmer issues discrete
get operations for a set of addresses A1 as shown in Fig.3,
DMI groups these |A1| discrete regions into 4 regions so
that each region belongs to one processor, and then sends
4 get requests to 4 processors in parallel (one of these get
requests is handled locally). To put it more general, when
the programmer issues discrete put/get operations for y dis-
crete global address space regions of arbitrary size across x
pages, DMI groups these y regions into x regions so that
each region belongs to one page, and then sends x put/get
requests (regardless of y) to the owner of each page in par-
allel. This read-write-set can be regarded as a form of in-
spector/executor[6].

4. PERFORMANCE EVALUATION
The experimental platform is a cluster composed of 16

nodes interconnected by 1Gbit Ethernet. Each node con-
tains two Intel Xeon E5410 2.33GHz (4 cores) CPUs, 32 GB
memory, running Linux OS with the 2.6.18-6-amd64 kernel.
We used gcc 4.1.2 with an -O3 option for DMI, and Open-
MPI 1.3.3 and mpich2-1.1.1p1 with an -O3 option for MPI.

We analyzed the stress of a 3-dimensional cubic object
using the FEM with 903 cubic elements and the force and
boundary conditions shown in Fig.5. This is a practical and
very hard-to-converge problem used in the parallel program-
ming contest on cluster systems in Japan[1] and powerful
preconditioning and complicated orderings are essential. We
compared the performance of the champion MPI program of
the contest with a DMI program using read-write-set with
the same algorithm as the MPI program.

In the result, we confirmed that we can easily describe this
complicated program using read-write-set in DMI although
we must calculate the complicated correspondence between
global numbers and local numbers in MPI. Fig.6 compares
the scalability of DMI with that of MPI. The line labeled
DMI gview in Fig.6 shows the result obtained when pro-

gramming was performed using one simple global address
space of 4KB pages as mentioned in section 3.1, not using
read-write-set. The communication time and computation
time per iteration were 0.2603 seconds and 0.2872 seconds
in mpich2, 0.6369 seconds and 0.2798 seconds in OpenMPI,
and 0.9890 seconds and 0.2666 seconds in DMI, respectively.
Here the communication time includes the time to wait for
data. This result indicates that read-write-set can achieve
much larger scalability than simple global-view program-
ming but that the scalability of DMI is inferior to that of
MPI because of the large communication time of DMI. An-
other analysis showed that this large communication time
of DMI is mainly due to the slowness of a point-to-point
synchronization of DMI in the matrix-vector multiplication
in each iteration. Thus optimization of the point-to-point
synchronization is crucial.

5. CONCLUSIONS
In this paper we proposed, implemented and evaluated

Distributed Memory Interface (DMI), a global address space
framework for irregular applications. In particular, we pro-
posed read-write-set, APIs which enable the highly produc-
tive description of exchanging values of ghost points in prac-
tical scientific applications with irregular domain decompo-
sitions and complicated orderings.

6. ACKNOWLEDGMENTS
We wish to thank the committee of the parallel program-

ming contest on cluster systems, including Kengo Nakajima,
for providing us with datasets of the FEM used in section
4. We also wish to thank to Jun Nakashima for providing
us with the champion MPI program of the contest.

7. REFERENCES
[1] The Second Parallel Programming Contest on Cluster

Systems.
https://www2.cc.u-tokyo.ac.jp/procon2009-2/.

[2] Kaushik Datta1, Dan Bonachea1, and Katherine
Yelick1. Titanium Performance and Potential: An NPB
Experimental Study. 18th International Workshop on
Languages and Compilers for Parallel Computing, Vol.
4339, pp. 200–214, 2006.

[3] XcalableMP Specification Working Group. XcalableMP
Application Program Interface Version 1. Technical
report, Center for Computational Sciences, University
of Tsukuba, Nov 2009.

[4] Kentaro Hara, Kenjiro Taura, and Takashi Chikayama.
DMI: A Large Distributed Shared Memory Interface
Supporting Dynamically Joining/Leaving
Computational Resources. IPSJ Transactions on
Programming, Vol. 3, No. 1, pp. 1–40, Mar 2010.

[5] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju,
Manojkumar Krishnan, Harold Trease, and Edo Apra.
Advances, Applications and Performance of the Global
Arrays Shared Memory Programming Toolkit.
International Journal of High Performance Computing
Applications, Vol. 20, No. 2, pp. 203–231, 2006.

[6] Jimmy Su, Tong Wen, and Katherine Yelick. Compiler
and Runtime Support for Scaling Adaptive Mesh
Refinement Computations in Titanium. Technical
report, Electrical Engineering and Computer Sciences
University of California at Berkeley, Jun 2006.

