< Application of Thread Migration
Techniques to Cloud Computing <

Chikayama Taura Lab. M1 Kentaro Hara

200Q.11.27

%k 2

. Ol\ Agenda

» What is Cloud Computing?
» Cloud Computing Services
- Amazon EC2
-> Google App Engine
=> Thread migration-based model
» Kernel Thread Migration
-> Iso-address
» Fast Memory Migration
-> Pre-copy
->» Post-copy
» Conclusions

e

“» 1. What is Cloud Computing?

.

J\ 1. What is Cloud Computing? *4
Backgrounds

» More and more apps require many computational re-
sources

> Web apps
¢ SNS
¢ Online game
-> High performance computing apps
¢ DNA analysis
¢ Earthquake simulation
-2 etc...

1. What is Cloud Computing?

XS

T

A conventional approach : A private datacenter

» Build up a private datacenter, and run apps there

-> Datacenter = Infrastructures + Platforms + Softwares

Company A's Datacenter

Softwares

Platforms
Servei Infras(tructu(res
SN ()\) \)

hS

e

000

Company B's Datacenter

Softwares

Platforms

o

Infrastructures

8

C

O U

T

1. What is Cloud Computing? *6

Demerits of a private datacenter(1)

» High management cost

=
—>

I'he purpose is NOT to manage a datacenter

I'he purpose is to run apps

» Difficulties in estimating the adequate number of servers

-> Underestimation leads to high loaded condition...

-> Overestimation leads to excessive capacity, which

means wasted investment...

J\ 1. What is Cloud Computing? * 7/
Demerits of a private datacenter(2)

» A datacenter with statically fixed resources cannot adapt
to dynamic load fluctuation efficiently

» General trend[Armbrust et al, 2009]
-> Average server utilization is about 5-20%

-> The peak workload exceeds the average by factors of 2
to 10

kyushu cluster Load last year

Load/Procs

-
Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mowv

O1-min Load O Nodes W CPUs W Running Processes

1. What is Cloud Computing?

T

A new approach : Cloud Computing

» A provider provides many resources as a service
» A user can use only as many resources as needed when

needed in a pay-as-you-go system

Use as you I

Company A

Service

J

Softwares

— L

Platforms

—VYauYam

nfrastructu res]
J

Use as you like

Company B

J\ 1. What is Cloud Computing? *Q
Merits of Cloud Computing

» No specialized knowledge about troublesome server man-
agement

» Efficient adaptation to dynamic load fluctuation

Service

J

Softwares

'/ L

Platforms

Use as you like

Company B

Use as you I

Company A

—VYauYam

nfrastructu res]
J

J\ 1. What is Cloud Computing? * 10
An example of Cloud Computing(1)

» When user A’s load increases, the resources which user A
can use increase

-> Load gets balanced

J\ 1. What is Cloud Computing? * 11
An example of Cloud Computing(2)

» When user B’s load exceeds user A’s load, the resources
which user B can use increase, decreasing the resources
which user A can use

=> Shared resources are scheduled (according to some poli-
cies)

J\ 1. What is Cloud Computing? * 12
The essence of Cloud Computing

» To absorb load fluctuation by sharing many resources
with many users|[Taura, 2009]
=> “Better to use 10000 servers with 10000 users than to use
10 servers with 10 users”

User A's Load
NA

User C's Load
A

Cloud's Load
NA

N

J\ 1. What is Cloud Computing? *13
Requirements for Cloud Computing services

» Although Cloud Computing services are featured in many
ways, ...
» Common requirements :

(1) To support flexible scale-up /scale-down in response to
load increase/decrease

(2) To schedule shared resources between users (according
to some policies)

Scale-up/Scale-down + Resource Scheduling

T

1. What is Cloud Computing? * 14

Road map

Cloud Computing services

Cloud Computing

Amazon EC2

Google App Thread Migrati-
Engine on-based Model

Iso-address

DMI : My proposed programming framework

e

% 2. Cloud Computing Services

.

J\ 2. Cloud Computing Services * 16
Key points of the following discussion

» What is a unit of scale-up/scale-down in each service?
» How does each service schedule resources?
=> How does each service handle the following situation?

D 1
Ji¢ @@

E

2. Cloud Computing Services * 17

Amazon EC2(1)

» A VM is a unit

» A user can scale up/down apps by starting/stopping
VMs when needed

» 0 A VM provides general computational environment
=> Possible to run long-time apps

2. Cloud Computing Services * 18
Amazon EC2(2)

» x Charged hourly per VM (not per actually used CPU
cycle)
-> because a VM consumes much resource even if it only
stays
» x Slow adaptability to load fluctuation
=> because starting /stopping a VM takes minutes

2. Cloud Computing Services * 19

How does it schedule resources?(1)

» What happens in the following situation?

,1,«

W
)
25/

) (B3R
N

2. Cloud Computing Services * 20

How does it schedule resources?(2)

» Rule : One user can boot only up to 20 VMs
=> A detailed application is required to boot over 20 VMs

» Thus, temporal surging load does not mean the increase
of the overall number of VMs

—> This enables Amazon EC2’s administrators to estimate
the overall number of VMs, which enables administra-
tors to manage resources not to run out of them

2. Cloud Computing Services *21

How does it schedule resources?(3)

» In essence, Amazon EC2 prevents the following situation
from happening, at the expense of rapid adaptability to
load fluctuation

=> x Slow adaptability to load increase

J\ 2. Cloud Computing Services * 22
Google App Engine(GAE)

» A user can run Web apps written in Python/Java on the
Google’s efficient infrastructure

» A request from a Web client is a unit

» [0 GAE automatically and rapidly scale up/down apps
in response to request load fluctuation

=> GAE can handle up to 7400 requests per minute (even
in a free default quota)

» [0 Charged per CPU cycle, bandwidth, ...
-> You only pay for what you REALLY use

2. Cloud Computing Services * 23

How does it schedule resources?(1)

» What happens in the following situation?
ReqReq

2. Cloud Computing Services * 24

How does it schedule resources?(2)

» Rule : Each request must be processed within 30 seconds
=> Requests over 30 seconds are killed

» In essence, GAE can schedule resources at short-time in-

tervals by limiting each request’s processing time
Rec

2. Cloud Computing Services * 25

How does it schedule resources?(3)

» x Thus, GAE supports only short-time apps
=> Specialized for typical Web apps
=> Almost impossible to run high performance numerical
computing
¢ ex : sorting, simultaneous equations solver, ...

2. Cloud Computing Services
A comparison between Amazon EC2 and GAE

Amazon

26

GAE
EC2

Unit of scale-up/scale-down VM Request
Resource consumption Large Small
Billing granularity Coarse Fine
Adaptability to load fluctuation| Slow Rapid
Domain of targeted apps Large Small
Long-time apps OK NG

2. Cloud Computing Services

A “middle” approach

» A thread migration-based model

27/

Thread
Amazon Migration- GAE
EC?2 based
Model
Unit of scale-up/scale-down VM Thread Request
Resource consumption Large Middle Small
Billing granularity Coarse Middle Fine
Adaptability to load fluctuation| Slow Middle Rapid
Domain of targeted apps Large Middle Small
Long-time apps OK OK NG

J\ 2. Cloud Computing Services * 28
A thread migration-based model

» A thread is a unit

» [0 Rapid scale-up/scale-down in response to load fluctu-
ation

=> because a thread is lighter than a VM
» [0 No running time limit for each thread
=> Possible to run long-time apps

2. Cloud Computing Services * 29

How does it schedule resources?(1)

» What happens in the following situation?

2. Cloud Computing Services % 30

How does it schedule resources?(2)

» Schedule resources by migrating running threads when
needed

2. Cloud Computing Services * 3]

How does it schedule resources?(3)

» x Each app’s performance depends on the global load
condition

-> Apps are distributed efficiently when the global load is
low

-> Apps are jammed when the global load is high

When the global load is low |When the global load is high

T

2. Cloud Computing Services * 32

Road map

Cloud Computing services

Cloud Computing

Amazon EC2

Google App Thread Migrati-
Engine on-based Model

Iso-address

DMI : My proposed programming framework

e

+2» 3. Kernel Thread Migration

.

J\ 3. Kernel Thread Migration % 34
What is kernel thread migration?

» To migrate a running kernel thread from a process on a
source node to a process on another node

» The entity of a kernel thread = CPU registers + mem-
ory(=stack + heap)

» Memory includes pointers

Nodel Node2
) 4

4)

(Process) (" Process)
Thread Thread

Thread Vi . Thread
Thread Igration]

A) R v,
‘-,_Thread
Registers P Memczry

N\
\ AN A A\

A
Doorners
ointers

3. Kernel Thread Migration

* 35

Ol\ Assumptio

nsS

» Hach process has multiple threads
» Each thread just accesses memory of the thread
=> A thead does not access another thread’s memory
¢ Data sharing between threads is achieved by DSM

layer
- No file access, no network communication, ...
Nodel Node?2
4) 4)
(" Process) (Process)
Thread Thread
Thread Migrat Thread
m Igration
a— R y,
"-,'Thread
| |Registers Memory 4

— A
)
ointers

J\ 3. Kernel Thread Migration * 36
A problem : Pointer invalidation

» A pointer is invalidated unless memory is located at the

exact same address on a destination node as on a source

node
address:0x4000

Source node
4 N
Thread
Registers Memczry 4
_\474_4 A}
- \—pointers—— — J
Migration
Destination node
4 N
Thread
22227
Registers \ Memciry Where??77:

_ *\\ Y,

address:0x1000 Pointers

J\ 3. Kernel Thread Migration * 37
Two solutions for pointer invalidation

(1) O Updating all pointers correctly on a destination node

=> It is hard to do perfectly, since an address value is
sometimes indistinguishable from an integer value in

C[Cronk et al, 1997]

(2) O Guaranteeing that the address space allocated on one
thread is never allocated on any other threads

=> This enables thread migration to the exact same address
- [so-address|Antoniu, 1999]

% 38

J\ 3. Kernel Thread Migration
How to achieve such allocation naively

» Negotiating where to allocate memory with all nodes at
every memory allocation

- Too inefficient!

(1)l want

(4)l decide
to allocate to allocate (3)0x2000~0x4000
memory. Node3 on 0x2000 IS empty Node3
p Nodel Fhreadl) A Nodel " [Thread])
Thresd > [Thread Lhread Thread
Thread Thread
= _ J _ J
Threaa\/
Node?2 Node?2
- hread| | Fhread| |
(2)Where is empty? Threa (3)0x1000~0x4000 Threa
is empty
J _ J

J\ 3. Kernel Thread Migration * 39
More refined approach : Iso-address(1)

(1) Address space is divided into “slots”
(2) Initially, distribute the whole slots to all nodes

(3) Thread t allocates memory on the slots owned by t’s be-
longing node without inter-node communication

Initial state Allocate 1 slot
Nodel Nodel
(TThread 1\ ([Thread > 1
|Regs Memory |Regs Memory
1 2 3 4 5 6 1 2 4 5 6
slots slots <
_ < ad/dress space——>) _ < ad/fress space—> Y,
owned owned
Node?2 Node2
4) 4)
1 2 3 4 5 6 1 2 3 4 5 6
slots | slots
_ <——address %a‘cg%) _ <—address ﬁacﬁ)

|
owhed ownhed

@

3. Kernel Thread Migration

* 40

More refined approach : Iso-address(2)

(4) T

(5) 1
bel

Nodel

Thread migration

fﬁThread

2

Regs

Memory

_

slots

1 2 3

4

5 6

AN

< A\ ad/fre space—>

Nodel

Deallocate 1 slot

hread t can migrate to the same address of another node

hread t deallocates memory and releases the slots to t’s
onging node

\
owned

Node?2

-

N\

slots

1 2 3

4

5 6

\
<—address §|Qa

=

owned

4)
1 2 3 4 5 6
slots
N\
_ < ad/z(ressspace%)
owned
Node?2
/fThread R
Regs|| Memory
///
1 2 4 5 6
slots \
_ <5——-a&5%es§§pac —>)
ownhed

J\ 3. Kernel Thread Migration 4]
More refined approach : Iso-address(3)

(6) When lacking in slots, a node steals some slots from an-

other node
Allocate continuous 4 slots
Nodel Nodel
4) 4)
1 2 3 4 5 6 1 2 3 4 5 6
slots slots \
_ évad/fress space——> Y, _ évaddl\ass space——>)
owned owned \
Node?2 Node?2
TThread IR TThread \1_3 4 5 6 1
Regs|| Memory Regs|| Memory ¢ 4 ¢—|
1 2 3 4 5 6 1 2 3 4/5/6
slots \ slots 177
_ ea&n‘&sé gpacg%) _ ead\olreséspace% Y,

ownhed ownhed

e

s» 4, Fast Memory Migration

.

4. Fast Memory Migration 43
A problem of naive thread migration

» Iso-address enables thread migration as follows :
(1) Stop the thread on a source node
(2) Migrate CPU registers and memory
(3) Resume the thread on a destination node

» A problem : Downtime is too long if the thread has huge
memory

J\ 4, Fast Memory Migration k44
Fast Memory Migration

» Techniques for downtime reduction :
(1) Pre-copy|[Clark et al, 2005]
¢ Migrate memory before thread migration
(2) Post-copy[Hines et al, 2009]
¢ Migrate memory after thread migration

J\ 4, Fast Memory Migration * 45
Pre-copy : Round 1(1)

(1) Forbid write access to all pages
(2) Migrate all pages in a background process

=> During this time, the thread runs concurrently on a
source node

(1)Set the protected attributes Page

Source node - ¥
of all pages to ""read-only ™

Registers Memory
i / V 7/]__l \ [
| | L NN\

kRunning“. r r r r r r r r r r r r j

(2)M|grate pages
Destination nodle 1%

(Reglste rs M\bmquy R

_ J

J\ 4, Fast Memory Migration * 46
Pre-copy : Round 1(2)

(3) Detect and record write faults of the thread

Source node Write faults

*I’

r r r'w rw r r r j

Registers Memory

\ Running... | " T

Migrate pages \/
Destination node |] | V

(Registers M@mcvy\l/ \I/ M A

g J

J\ 4, Fast Memory Migration x4/
Pre-copy : Round 2

(4) Again, forbid write access to all pages
(5) Migrate the pages dirtied during the round 1

Source node (1)Set th protected altltributes “
of all dirtied pages to ''read-only N

Registers Memory

' \

| —
(2)Migrate dirtied pages

| V
(Registers Memory \I/ \ R

Destination node

g J

J\ 4, Fast Memory Migration * 48
Pre-copy : Round n

(6) Again, forbid write access to all pages
(7) Migrate the pages dirtied during the round n — 1
(8) Repeat such rounds until
=> the number of dirtied pages becomes small
=> or the number of rounds exceeds the predefined limit

Source node (1)Set the protected attributes

of all dirtied pages to ''read-only"
Registers Memory

|/ [\
Running... F r r r|r r r rfr|r r r

(2)Migrate dirtied pages

Destination node | V

[%egisters Memory W \ j

J\ 4, Fast Memory Migration * 49
Pre-copy : The final copy

(9) Stop the thread on a source node
(10) Migrate CPU registers and all dirtied pages

(11) Resume the thread on a destination node

(1)Stop the thread
Source node

Registers Memory A
_ r r r rm™wlr r r rV\1 wroror
(2)Migrate registers (3)Migrate dirtied pages
Destihation node | |
(Reg¢ters Memory \; \I/ \I/ A
_Running... Y,

(4)Resume the thread

J\ 4, Fast Memory Migration # 50
Pre-copy : A time-line

The thread runs on the source node Downtime

[I/Roundl I Round 2 I

Stop the thread Start the thread

Migrate registers
and dirtied pages

Time

J\ 4, Fast Memory Migration kO]
Pre-copy : An improvement

» A motivation : Migrating dirtied pages many times
should be avoided

» An observation : Memory access has temporal locality

> The pages frequently dirtied during the previous
rounds will be again dirtied in the near future

» An improvement :

=> In the round n, migrate only the pages dirtied during
the round n — 1 that have not frequently been dirtied
during the previous rounds

J\ 4, Fast Memory Migration * 52
Pre-copy : Characteristics

» x Dirtied pages are migrated many times
» x The number of migrated pages is app-dependent

-> Read-intensive apps : The number of migrated pages 2
The number of actually used pages

=> Write-intensive apps : The number of migrated pages >
The number of actually used pages

» x Downtime is long especially for the write-intensive
apps

» [0 Running apps’ performance degrades little since pages
are migrated in a background process

J\ 4, Fast Memory Migration #5953
Post-copy : The basic idea(1)

(1) Stop the thread on a source node
(2) Migrate only CPU registers

(3) Forbid any read/write access to all pages on a destina-
tion node

(4) Resume the thread on a destination node
Source node (1)Stop the thread

Registers Memory R
- J
(2)Migrate registers
Destihati q (3)Set the protected attributes

estipation node " : "

of all pages to ''forbid all
N bag)
Regipters Memory /.
L1) | U |
L 1] | |
@nning... ————————————)

(4)Resume the thread

J\ 4. Fast Memory Migration * 54
Post-copy : The basic idea(2)

(5) Detect a read /write fault of the thread
(6) Migrate the page in a demand-driven manner

Source node

\

Registers Memory

N\ J
(2)Migrate the page

Destination node |

(Registers Memory \I/ R

\ Running... — — — — — — — — T rw — —)

(1)Read/Write fault

J\ 4. Fast Memory Migration * D55
Post-copy : Problems of the basic idea

» Problems :

=> Running apps’ performance degrades at every
read /write fault

=> Some pages remain on a source node unless the thread
accesses them

» A solution : Forcing a background process to migrate
pages, considering temporal access locality

J\ 4, Fast Memory Migration * 56
Post-copy : Improvements(1)

(7) pivot=the page on which the thread caused a read /write
fault most recently

(8) A background process migrates pages around the pivot

Source node Migration\order
(Registers Memory pivot\ \
S J
\l/ \l/
(2)Migrate pages
Destination node \4 I V
Registers Memory \I/ A
_Running... - - - - - — — — w o= =

(1)Read/Write fault

J\ 4. Fast Memory Migration xS/
Post-copy : Improvements(2)

(9) The pivot is updated at every read /write fault

(10) A background process continues to migrate pages
around the pivot

Source node Migration order
(Registers Me; / inOt\)
- Y,
\l/ \l/
(2)Migrate pages
Destination node V | V
Registers Memory \I/ A
kRunning... - — — I'wWw — — W I'W Iw rw rw rwj

(1)Read/Write fault

J\ 4, Fast Memory Migration % 58
Post-copy : A time-line

Downtime The thread runs on the destination node

Migrate pages (pull + pu?l

Stop the thread Start the thread

Migrate
registers

Time

J\ 4, Fast Memory Migration * 59
Post-copy : Characteristics

» [Stable for broad range of apps

=> For both read-intensive and write-intensive apps : The
number of migrated pages = The number of actually
used pages

» [1 Downtime is short

-> because all that have to be migrated during downtime
are CPU registers

» x Running apps’ performance degrades at every
read /write fault

J\ 4, Fast Memory Migration % 60
Pre-copy vs Post-copy : A general view

» The number of migrated pages
-> Read-intensive apps : Pre-copy 2 Post-copy
-> Write-intensive apps : Pre-copy > Post-copy
» Stability for broad range of apps
-> Pre-copy < Post-copy
» Downtime
-> Pre-copy > Post-copy
» Running apps’ degradation
-> Pre-copy < Post-copy

4., Fast Memory Migration Ol
Pre-copy vs Post-copy : Experimental results

» Pre-copy vs Post-copy in VM migration[Hines et al, 2009]

Pages Transferred
5200000

glaDDDD O Post-Copy
2160000 M Pre-Copy
2140000
@120000
100000
% 80000
& 60000
0. 40000
X 20000
<t
H 0
Kernel Compile MetPerf
SpecWeb2005 BitTorrent
Application
Total Migration Time Downtime
12 2000
O Post-Copy 1800 O Post-Copy
10 M Pre-Copy —~ 1600 M Pre-Copy
9 8 1400
@ ° ¥ 1200
= 6 = 1000
E .E, 800
= 4 @ 600
£
2 = 400
= 200
] 0
Kernel Compile MetPerf Kernel Compile MetPerf
SpecWeb2005 BitTorrent SpecWeb2005 BitTorrent
Application Application

» The reason that post-copy’s downtime is longer than pre-
copy’s downtime is due to implemental issues

J\ 4, Fast Memory Migration * 62
Pre-copy vs Post-copy : In our scenario

» Rapid Adaptability to load fluctuation is important in the
thread migration-based model

= A running thread should be migrated immediately
when needed

» Post-copy is more suitable than Pre-copy

Pre-copy
The thread runs on the source node Downtime

.

Migrate registers
Round 1 I Round 2 I and dirtied pages

Time
Stop the thread Start the thread
Post-copy

Downtime The thread runs on the destination node

Migrate .
registers Migrate pages (pullm

Stop the thread Start the thread

Time

5. Conclusions 64
Conclusions(1)

» Common requirements for Cloud Computing services :

(1) To support flexible scale-up/scale-down in response to
load increase/decrease

(2) To schedule shared resources between users (according
to some policies)

» Three Cloud Computing services :

Thread
Amazon Migration- GAE
EC2 based
Model
Unit of scale-up/scale-down VM Thread Request
Resource consumption Large Middle Small
Billing granularity Coarse Middle Fine
Adaptability to load fluctuation| Slow Middle Rapid
Domain of targeted apps Large Middle Small
Long-time apps OK oK NG

9. Conclusions * 65

Conclusions(2)

» How to achieve the thread migration-based model
-> Kernel thread migration

¢ [so-address enables memory allocation with little
inter-node communication

-> Fast memory migration

¢ Post-copy is more suitable than Pre-copy for the
thread migration-based model

